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The relationship between generalization and differentiation fluctuates depending on the ongoing

context, which is extracted by the current adaptive capability of the learner. In the present report, we

numerically examine the relationship between generalization and differentiation using a novel

connectionist model. The simulation results of incremental learning indicate that the newly added

the inconsistency with the preceding task. This observation supports our assertion that it is

fundamentally important to investigate how the transition dynamics of learning toward a goal affects

the finally acquired structure of the learner.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The incremental learning process is essential for developing
organisms. In some cases, the incremental learning process exists
as the developmental change of behavior. In other cases, it is
regarded as new skill acquisition. The characteristic time scale
of incremental learning ranges from a few seconds to dozens
of years. Adaptation to an unknown and fluid environment
continuously modifies how each individual reacts to the world.

The transformation of acquired behavior and skills has
interested researchers in various fields, such as developmental
psychology, psycho-physics, linguistics, ethology, developmental
robotics, machine learning theory, and artificial intelligence. Some
of these approaches emphasize a phased development or phased
strategy change, as criticized in [12,16]. According to the
perspective of the approach, if a small number of effective
parameters can be extracted to characterize the skill for each
phase, then the main interest will become the specification of the
timing for switching the phase and the investigation of the basis
of each behavioral function. However, recently, we have observed
numbers of experiments and numerical simulations that highlight
a gradual aspect of development rather than phased transition in
learning. In the following, several studies are cited in relation to
these observations.
ll rights reserved.
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1.1. Evidence from psycho-physics experiments

The experimental design of our computational study is directly
inspired by psycho-physics research on consolidation [2,11,17]. In
order to make our motivation clear and to understand the
difference between incremental concept of these psycho-physics
experiments and our numerical experiment, we briefly survey the
previous studies.

A previous study [2] reported that after 4 h, the skill of learners
at motor task P was not disrupted when the learner learned
another task Q. This depends on the interval time length, which
determines whether the internal model for initial task P has been
consolidated.

Another experiment [11] examined whether the passage of
time makes the internal model less fragile. The participant was
asked to make rapid reaching movements to a series of targets
with a robotic hand. A force field is applied by the torque motors
of the robotic arm during the task. The previous authors found
that for a few hours after the completion of practice, the internal
model became less fragile with respect to behavioral interference.
They also investigated positron emission tomography scans in the
task, and as a result suggested that within 6 h after the completion
of practice the representation of a motor skill is reorganized in the
brain.

In another previous study [17], the finger tapping motor skill
task was performed. The participants were instructed to press
four numeric keys using their fingers following a five-element
sequence presented to them repeatedly. The authors found that
waking reactivation can return a previously consolidated memory
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to a fragile state, making it susceptible to interference. They
argued the different forms of consolidation corresponding to
waking and sleeping reactivation during the interval time.

At present, it is clear that simply asking ‘‘WHAT is given to the
learner after completion of training?’’ is not sufficient for the
prediction of whether the previously consolidated skill can be
interfered or improved. The above psycho-physics experiments
indicate that in order to determine the ‘‘stiffness’’ of an acquired
skill the essential question is ‘‘HOW is the task presented?’’ These
studies are good examples suggesting that previously learned
functional modules should be modified when they are activated in
some cases. The modeling of the present study is applied under
the same premise, in which the history-dependency of incre-
mental learning is regarded as crucial.
1.2. A computational model: the mixture of experts system

In the following, we briefly describe the ‘‘mixture of experts’’
type architecture [5,6,18] as a part of the theoretical background
of the present study. This architecture supplies one of the
computational frameworks by which to implement differentiation
in learning.

The mixture of experts consists of learning units and a gating
mechanism. At the end of successful learning, each lower-level
unit works as an expert for a specific task and only one gate for the
best unit dominates the entire system dynamics during the task.
As a result, the system finally grows locally represented knowl-
edge for each skill within a lower-level unit.

For instance, this method was applied to a mobile robot
experiment for a sensory-motor online navigation task [15]. In the
numerical experiment, the two-wheeled agent learns to move
through a two-dimensional maze with the recurrent neural
network (RNN) controller as a lower-level unit. Finally, the agent
can automatically open and close suitable gates corresponding to
lower-level units by detecting different types of the ongoing
environment (i.e., wall configuration) in an online manner. In this
case, only one lower-level unit governs the resulting agent motion
and the dominant unit is sometimes switched when a significant
environmental change takes place. This behavior is called
‘‘winner-takes-all’’ gating dynamics, which is typically observed
for a successfully designed mixture of experts system.

Another study evaluated the mixture of experts system by
applying it to analyze the result of a visuomotor learning task by
human subjects [4]. The subjects were exposed to opposite prism-
like visuomotor remappings on a two-dimensional monitor
screen, which generates conflicting pairing between the visual
and motor spaces. The authors showed that the mixture of experts
framework successfully gives a quantitative account of the
modular decomposition of learned mappings.

The goal of the present study is to build a plausible numerical
model of an agent that extracts the essence of human incremental
learning ability. Unfortunately, for this purpose, we cannot simply
apply the mixture of experts because of the ‘‘inflexibility’’ of
lower-level units. In a sense, lower-level units of this architecture
can be self-organized, providing a seemingly useful tool. However,
in previous studies, whether the inflexibility is assumed to be
explicit or implicit, the theoretical frameworks share the same
principle: once a lower-level unit has acquired a suitable function
for the task, the unit (one of the ‘‘experts’’) stops learning and the
structure should be protected from the other tasks. When we
consider the incremental learning paradigm within the architec-
ture, the previously acquired skills are assumed to be frozen and
stable with respect to tasks that are given afterward.

The previously described experimental results of psycho-
physics [2,11,17], however, provide a striking contrast to the
above-mentioned principle. These experiments revealed that
whether the well-organized modular motor skill becomes plastic
depends on time spent in specific brain states between training
and reactivation events. Thus, the mixture of experts type system
is a good candidate for modeling the modular nature of skills or
memory, although it is incompatible with the learning module
plasticity, which allows each functional module to be modified
even after completion of the first skill training. The difference
between the present model and the original mixture of experts
will be explained in the following two sections.

1.3. The parametric bias method

The RNN has a variety of applications and is attractive as
an apparatus to deal with tasks that include time series
sequences. In the present report, the RNN is considered only
with regard to its capacity as a prediction device for short periodic
time sequences [10]. An RNN that has learned successfully can
sequentially output predicted motor values by supplying motor
values of the current time step. However, there are two methods
by which to evaluate the degree of success in learning a time
sequence.

One method involves the summation of predicted output
errors over the sequence by supplying ‘‘correct’’ input values in
the teacher signal. This method is referred to as an ‘‘open-loop
condition’’ method. Another method that is similar to the open-
loop condition, but which substitutes the predicted output of the
previous time step for the input value of the current time step.
This method is referred to as a ‘‘closed-loop condition’’ method.
Closed-loop learning is more difficult for a network than open-
loop learning because a very small deviation in the predicted
output at an early time step in a sequence might develop into a
large error from the ideal trajectory after several steps.

A single RNN can potentially predict a variety of sequences if
correct input (i.e., input having exactly the same value in the
teacher signal sequences) is given at every time step. Back-
propagation through time (BPTT) algorithm [10] enables an RNN
to acquire several trajectories in terms of the open-loop condition.
However, in the present model, a more stringent condition is
assumed in the prediction process. That is, the predicted sequence
should be calculated by iteratively giving the output value of
the previous step as the input of the next step. This self-looping of
the prediction process is naturally required by the human
cognitive ability, so that we, as humans, can internally recollect
and follow a series of events or movements that was experienced
previously.

Under this closed-loop condition for the prediction process, an
RNN usually fails to self-organize with the existing gradient-
descent method when the number of time series patterns is
submitted for learning, because the task implies that the achieved
RNN should form a multiple-limit-cycle-attractor state, which is
difficult to self-organize. The parametric bias (PB) method has
been developed to improve the RNN capability for multiple time
series patterns [14,13]. The basic concept of the PB method is that
PB values, being maintained constant over a sequence, provide the
information needed in order to differentiate between sequences.
Note that the PB value itself is self-organized simultaneously with
the other network parameters and the gating profile. With the
help of the PB method, a single RNN can easily construct internal
models for more diverse time-dependent patterns.

1.4. The model design policy

From a model study standpoint, there are a number of
attractive approaches to the incremental learning issue that are
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similar to the present assumption regarding the plasticity of the
learner. For example, Kuniyoshi and Berthouze [8,1] discussed the
importance of the developmental aspect in building sensory-
motor coordination of a vision robot. Kaplan and Oudeyer [7,9]
proposed a learning system driven by an internal novelty reward,
which is dependent on the current internal state. They applied
this learning system to a mobile robot that explored an artificially
designed environment. However, in the present study, we
concentrate on the history-dependency of motor learning, rather
than on the self-organization of sensory-motor coupling or the
novelty reward.

Our simulated agent and training environment do not have
a consolidation factor, but rather partly share the incremental
learning setup and periodic nature of the motor task with
real experiments for human subjects [2,11,17]. This fact leads
our numerical experiment to an abstraction of reconsolida-
tion process rather than consolidation process [3]. We designed
a model to satisfy the requirements of (i) modularity for learnable
units and (ii) rewritability of the learnable unit. Below, we
explain how these two assumptions take shape in the current
context.

The concept of modularity of skill learning (i) is not new and
has often been assumed in artificial intelligence studies and other
machine learning theories. According to this concept, each
learnable unit is attributed to each skill or knowledge after
successful acquirement. The proposed model follows the general
framework of the modular learnable unit, but has a critical
difference from the traditional models in the sense that the
proposed machine does not have an ideal state into which to
converge. The acquired structure can be stable, although the state
is not regarded as optimization for a particular task set—this
implication in the presented model is introduced by the above
rewritability assumption (ii).

If we assume that modular learnable units can be reorganized
at any time, even after successful skill acquirement, the agent uses
a single method to ‘‘differentiate’’ and ‘‘generalize’’ incoming
stimuli. In order to clarify this method, we consider the simple
case in which an agent has first learned sequence A1, followed by
sequence A2. The agent is considered to ‘‘differentiate’’ sequences
A1 and A2 if two different learning modules acquired these
sequences separately. Similarly, the agent is considered to
‘‘generalize’’ sequences A1 and A2 if one of the learning modules,
which has learned sequence A1, also acquires sequence A2.

This definition implies that generalization and differentiation
are two different methods of accepting the newly exposed
stimulus A2 for the agent. Note that the previously established
module for sequence A1 works as a standard when the entire
system infers whether sequence A2 should be grouped into the
same category as those for A1. In the same manner, we can
imagine other succeeding sequences A3, A4; . . . after sequence A2.
At any time, the previously acquired structure of learnable
modules always determines how to differentiate/generalize the
currently facing stimulus.

The border between the differentiation and the generalization
processes is clear if the designer of the model gives a fixed
definition of the categories for a sequence. In the example
discussed above, the border fluctuates depending on the accu-
mulation of past experience. In this sense, the method of
differentiation or generalization is not given a priori, but is
indivisibly embedded in the never-converging modular structure
of an agent.

In the preceding two sections, we described the mixture of
experts architecture and the PB method as a theoretical frame-
work. By combining these two methods, we can enhance the
generalization capability of the learnable module in the system.
This novel architecture is introduced at the request of the model
design policy discussed in this section and the incremental
learning task setup described in the following section.
2. Learner model

2.1. Assumed situation

In the present numerical model, we assume that there is a
subject (an agent) who is asked to learn groups of motor
sequences. The motor sequence is given as the coordinates of a
small circle on a monitor screen. The circle moves only
horizontally for a short time. The subject has to predict the
position of the circle at the next step. The predicted position is
indicated by moving a mouse cursor to the position before the
next circle appears. Namely, this is a trajectory tracking task in
one-dimensional continuous space in discrete time.

The agent is modeled by a neural network and motor sequence
patterns are set as a teacher signal. The learning system consists
of lower-level networks combined by a gating module (see Fig. 1).
The experiment is simulated in a supervised learning framework.

2.2. Lower-level network with PB

The lower-level network (the subnet) is a three-layer RNN with
PB inputs (Fig. 2). The network accepts one-dimensional time
series XðnÞ and PB vector pi

qðkÞ as input, where n is the time step,
i denotes each subnet, q is a sequence identifier and k is a node
number. The context units in the current step are copied to the
input in the next step. We apply the sigmoid function in updating
each unit in order to limit the unit value. Each subnet can
receive an input sequence regardless of the gate opening. The
output unit value yiðnþ 1Þ is regarded as a predicted position of
the next step. The numbers of PB units, mid units, and context
units are 2, 5, and 3, respectively. It is assumed that the PB unit
remains constant during a sequence. Note that the subnet
independently holds the PB vector set, in which each PB vector
is attributed to each sequence in the entire task. Along with other
network weights, the PB vector is trained by maximizing the
likelihood function, which will be described in detail in the
following section.

2.3. Mixture of experts system and gate function

The mixture of experts architecture accepts a one-dimensional
time series XðnÞ as an input and outputs Yðnþ 1Þ as a predicted
position in the next step:

Yðnþ 1Þ ¼
XNsubnet

i¼1

gi
q � y

iðnþ 1Þ, (1)

where Nsubnet is the number of subnets and gi
q denotes the gate

opening value of subnet i for the q-th sequence. In the following
experiments, we set Nsubnet

¼ 2. Gate opening gi
q is given by the

soft-max activation function:

gi
q ¼

esi
qPNsubnet

j¼1 esj
q

, (2)

where si
q denotes a gate activation variable. The proposed

system has a gating profile, which supplies the gate activation si
q

for each subnet. Note that this profile is attributed to each
sequence and the gate activation is kept constant during a single
sequence.

In order to update the network weights of a subnet, the gating
profile and the PB, the likelihood function ln Lq for the q-th
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sequence is introduced by the following formulation in [5]:

ln Lq ¼ ln
XNT

m¼1

XNsubnet

i¼1

gi
q � exp

�jy�ðmþ 1Þ � yiðmþ 1Þj2

2s2

� �
, (3)

where NT is the length of a sequence, y�ðmþ 1Þ is the teacher
signal for m-th input, and s is the exclusiveness parameter.

The proposed system performs learning by following the
likelihood maximization principle. Update rules for the network
connection weight wkl, the PB vector, and the gate activation
variable are given by

dwkl ¼ �w
q ln Lq

qwkl
þ xw � dwprev

kl , (4)

dpi
qðkÞ ¼ �p

q ln Lq

qpi
qðkÞ
þ xp � dpi

qðkÞ
prev, (5)

dsi
q ¼ �s

q ln Lq

qsi
q

þ xs � dsi
q

prev
, (6)

where �w; �p, and �q are learning rates, xw, xp, and xs are inertia

coefficients, and dwprev
kl , dpi

qðkÞ
prev, and dsi

q
prev

are updates for the

previous training step. Actual computation of these updates is
performed using the BPTT algorithm. In general cases, the teacher
signal set includes more than one sequence, and these updates are
averaged over sequence q. The delta rule is iteratively applied in
the training process.
3. Experimental results

Two numerical experiments are designed to apply our network
architecture to different learning situations. First, the basic
behavior of the learning system is investigated. Then, we discuss
the effect of incremental learning of motor sequences.

3.1. Experiment I: fixed motor sequence set learning

The teacher signal set shown to the agent consists of a variety
of one-dimensional sequence patterns. In this experiment, the
target patterns are fixed and do not change throughout the
learning process.

3.1.1. Definition of task group

Each sequence pattern is periodic: an eight-period one-
dimensional sequence is repeated four times to form one
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sequence having 32 points. A task group is generated by applying
the modification function MðxÞ to a particular prototype trajectory,
XiðnÞ, where i and n denote the sequence number and time step,
respectively. In addition, MðxÞ is a sinusoid function rotated about
the origin and defined by

1ffiffiffi
2
p ð�xþMðxÞÞ ¼

2
ffiffiffi
2
p

a

pnp
sin

pnp

2
ðxþMðxÞÞ

n o
, (7)

where the parameters are limited to �1:0oao1:0, np ¼ 1;2; . . . :
A modified sequence is generated by substituting one prototype
XðnÞ into x of MðxÞ. One example of the modification function MðxÞ

is shown in Fig. 3. By fixing np to be constant and changing
parameter a gradually, we obtain a similar yet distinct series of
sequences.

The entire teacher signal consists of two task groups generated
by different prototype trajectories.
3.1.2. Introduction of distance measure between two sequences

How can we characterize the entire teacher signal? In this
simulation, there are two different task groups, and the members
of each task group share the same prototype trajectory within a
group, thus quantifying both the similarity between two groups
and the similarity within a group is feasible.

Here, we introduce the distance measure for two sequence
patterns given by Eq. (8). The definition reflects that the structure
to be learned by an agent is periodic and is not related to the
initial point in a sequence, e.g., the distance between the period-3
sequences ð0:1;0:2;0:3;0:1;0:2;0:3; . . .Þ and ð0:2;0:3;0:1;0:2;0:3;
0:1; . . .Þ should be zero:

Dij ¼min ð1=LsÞ
XLs�1

n¼0

jxiðnÞ � xjðnþmÞj;

(

m ¼ 0; . . . ; ðLs � 1Þ

)
, (8)

where i and j specify sequence numbers and Ls denotes the
periodicity of the sequence (¼ 8). In measuring Dij, the averaged
Euclidean distance is calculated for each phase offset m. When
a particular m0 results in the smallest distance, these two
sequences should be compared by sliding the pattern xjðnÞ by m0.

Using the above distance measure, two values are calculated:

the maximum distance within a task group Dmax_within
P and the

minimum distance between two groups Dmin_between
PQ , where P and

Q denote task groups:

Dmax_within
P ¼ maxfDij; i; j 2 Pg, (9)

Dmin_between
PQ ¼ minfDij; i 2 P; j 2 Qg. (10)

These computed values are useful for characterizing an entire
teacher signal. Suppose that the entire teacher signal consists of

two task groups, A and B. If Dmin_between
AB � Dmax_within

A is a negative

value, then it is difficult for an agent to perfectly separate group A

from B. Since some of the members in group A, there are more
similar sequences in group B than the most dissimilar sequence in

group A. Thus, two values, Dmin_between
AB � Dmax_within

A and

Dmin_between
AB � Dmax_within

B , reflect how clearly these two task groups

are divided in terms of the distance measure Dij.

3.1.3. Task procedure and simulation results

In Experiment I, we investigate how the proposed learning
system works for a fixed teacher signal set. Fig. 4 shows the
prototype trajectories for task groups A and B. The entire teacher
signal is given by applying Eq. (7) to the two prototypes and does
not change throughout the task. Each task group consists of
11 sequences. The task is batch learning, and all of the sequences
in a set are shown equally to the learner.

Typically, the learning of task groups is performed as follows.
At first, the gate profile is set provisionally, based on the current
error of each network, which means that it is based on badly
organized network weights and the PB vector. As the network
weights and the PBs grow systematically, the gate profile tends to
stabilize. The gate learning is unstable as long as each network is
not supplied with consistent teacher signals. The instability of the
gate profile can give rise to a catastrophic change in the network
growth, and vice versa. Generally, in the final stage, self-
organization of the gate profile precedes that of each network
weight and PB vector. In this way, a subnet chooses which
sequence to learn based on the current predictability by the
opening gate, and these processes are unified in the likelihood
function.

Next, we consider the conditions for successful learning. The
agent is required to simultaneously generalize a variety of
trajectories centered around one prototype and to differentiate
members of two task groups. As stated earlier, consideration of
the distance between/within groups helps to analyze this point.

By fixing np to be one and gradually changing the maximum
value of jaj in Eq. (7), we obtain sets of entire teacher signals that
have different ðDmin_between

AB � Dmax_within
A , Dmin_between

AB � Dmax_within
B Þ

pairs. The maximum values of jaj for task groups A and B are set as
ð0:0;0:1; . . . ;0:9Þ for each group, and 10� 10 ¼ 100 entire teacher
signal sets are tested. In this simulation, the parameters are set as
follows. The exclusiveness parameter for the likelihood function is
s ¼ 0:180. The learning coefficients �w, xw, �p, xp, �s, xs are set to
0:06;0:9;1:14;0:82;0:24, and 0.12, respectively. The weight of each
subnet is limited within the range of ½�5:5;5:5�. The gate
activation value si

q is limited within the range of ½�4:0;4:0�.
Fig. 5 illustrates the success rate diagram, and for each teacher

signal set, the success of the learning is enumerated starting from
100 different initial conditions for the network weight. In each
learning process, 1500 training steps are iterated.

We regard a particular learning as being successful when the
following conditions are satisfied: (i) subnet 1 becomes an expert
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of task group A (or B) and subnet 2 becomes an expert of task
group B (or A) and (ii) all of the gate opening values for the
‘‘winner’’ sequence are greater than 0.85. The numerical result
supports the previous speculation on separation of task groups.
The successful learning rate is higher when parameters
Dmin_between

AB � Dmax_within
A and Dmin_between

AB � Dmax_within
B are both

large positive.
In addition, an asymmetry exists between task groups A and B

in the success rate diagram, which can be explained by the
learning-algorithm-specific and network-structure-specific fac-
tors. If we randomly generate two prototype sequences, there is
a slight difference in the learnability of the sequences. This factor
is not controlled in this simulation. However, the asymmetry can
be neglected in the present discussion.

Here it should be noticed that low success rate (no more than
50% at any point) shown in Fig. 5 does not mean low convergence
rate. For any teacher signal set chosen from Fig. 5, at least 90 of
100 trials converge, achieve high likelihood value, and satisfy the
aforementioned condition (ii). In this case, the learning process
finishes successfully in terms of maximization of likelihood
function. This shows one of the advantages of the combination
of mixture of experts and PB architecture. Comparatively low
success rate in Fig. 5 just reflects that the way the agent separates
sequences into two groups is sometimes different from what an
experimenter expect.
3.2. Experiment II: incremental learning

In the following experiment, the structural change of the
system in incremental learning is investigated. The teacher signal
set shown to the agent is switched with another set during the
learning process.
3.2.1. Task design

Fig. 6 illustrates the experimental design forming three stages.
In the first session, a teacher signal set is provided to the agent

in the same way as in Experiment I, and training is performed
1500 times.

In the second session, another teacher signal set is prepared.
Task groups Ax and Bx ðx ¼ 1;2Þ indicate the task groups for the
x-th session. In Fig. 6, the teacher signal sets for both sessions are
shown. Task groups Ax and Bx share the same prototype trajectory.
In generating the task group for the second session, the maximum
value of parameter aj j in Eq. (7) is the same as that for the first
session. The critical difference in constructing task groups A2 and
B2 is the parameter np : np ¼ 2 for A2 and np ¼ 1 for B2. As np

increases, the generated trajectories become more twisted. At the
twisted point, the new trajectory can change its shape from a
decreasing function to an increasing function, and vice versa. As a
result, higher inconsistency with the previous task is introduced
in task group A2, compared to task group B2. Task group B2
appears to be identical to B1, although different trajectories are
chosen.

Just before beginning the second session, only the gate profile
and the PB acquired in the first session are eliminated. The weight
for each network is preserved and carried over in the second
session. This assumption is derived from the fact that the network
weights grow slowly and represent the basic ability to perform the
task. In contrast, the PB vector and gate profile grow quickly and
represent the ability to adapt to the ongoing task using current
abilities.

After obtaining the PB vector and the gate profile, all of the
parameters are once again self-organized for the remainder of the
session.

The third session is prepared for retesting, and learning of the
agent is not performed. The purpose of this session is to quantify
how the previously acquired performance for task groups A1 and
B1 improves or deteriorates after the incremental learning.



ARTICLE IN PRESS

SESSION 1

TASK GROUP A1

TASK GROUP B1

TASK GROUP A2

TASK GROUP B2

TASK GROUP A1

TASK GROUP B1

1500 steps no learning

TASK GROUP A1

SESSION 2 RETEST

1500 steps

TASK GROUP B1 TASK GROUP A2 TASK GROUP B2

Fig. 6. Three-stage task design of Experiment II. The unit sequences shown at the top of the figure are iterated four times and form a periodic sequence. Only the first two

sessions include the learning process. In the RETEST session, the system parameters are fixed and the error for the task in the first session is estimated.
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3.2.2. Simulation results

In this experiment, by measuring the distance between every
sequence pair in generated task groups, we get the following

values: Dmax_within
A1 ¼ 0:122, Dmax_within

B1 ¼ 0:153, Dmin_between
A1B1 ¼

0:231 for session 1, and Dmax_within
A2 ¼ 0:137, Dmax_within

B2 ¼ 0:152,

Dmin_between
A2B2 ¼ 0:236 for session 2. The other parameters for

learning are the same as those in Experiment I.

Fig. 7 represents the record of learning process in the first and
second sessions. The horizontal axis of all plots in this figure
corresponds to the training time step.

In Fig. 7, the likelihood, average likelihood and total likelihood
are renormalized and plotted within the range of ½0:0;1:0�. The
leftmost likelihood plots show the likelihood value for each
sequence, which is acquired by each subnet. The average
likelihood plots show the likelihood value for each sequence,
which is averaged over two subnets. The total likelihood plot
indicates the likelihood value, which is defined by Eq. (3). For
instance, when one of the subnets takes a higher value than
another subnet in the leftmost likelihood plot, the former subnet
is expertized for the particular sequence. The total likelihood plot
reflects the success of the entire system in acquiring the task set.
The output error of each subnet for each sequence is also plotted
in Fig. 7. This error plot has one-to-one correspondence to the
likelihood plot for each sequence. The gate opening plot shows the
change of the gate opening gi

q in Eq. (2).

Until the end of first session, the entire system successfully
learns the task set by the expertization of subnet 1 for sequences
0–9, and subnet 2 for sequence 10–19. Here, note that the sequence
is numbered systematically for convenience. However, the learner
(the modular network model) is not exposed to any cue that
indicates which sequence belongs to a particular task group.

When the second session starts at a training time ¼ 1500
steps, the likelihood first declines, but soon after, the gate profile
returns to the previous value learned in the first session and the
likelihood again increases. This ‘‘recovery’’ process happens
within a small number of training step and does not cause a
drastic change in the network weight. Thus, the system preserves
the capabilities of task groups A1 and B1, even after finishing the
second session.

Self-organization of the PB vector is important for a single
subnet to adapt to multiple sequences [14]. When a subnet has a
very small gate opening for a particular sequence, its correspond-
ing PB vector does not affect the prediction result. Fig. 8 shows the
self-organized values of PB units after the second session. Note
that different vectors are set for each sequence, which produces
better likelihood, as shown in Fig. 7. In addition, when the gate for
subnet i (i ¼ 1 or 2) is opening for a particular sequence, only the
self-organized PB vector for subnet i effectively works in the
entire system, and the PB vector for another subnet is not related
to the result of prediction task.

The numerical result of retest in the third session is shown in
Fig. 9 and is compared with the errors at the end of first and
second sessions. The error is the RMS error estimated within each
subnet and is not related to the gate opening. In these two
learning sessions, subnets 1 and 2 become experts of task groups
Ax and Bx, respectively. First, it is observed in Fig. 9 that the error
of subnet 1 for task group Bx and the error of subnet 2 for task
group Ax are large, that is, they are greater than 0.1 in all three
sessions. However, in practice, these bad performances do not
affect the following discussion because such an unsuitable subnet
is blocked by the gating system.

It must be emphasized that the error in the retest session
shows a clear contrast between the reorganization of subnets
1 and 2. When we observe the performance of subnet 1 for task
group A1, the errors increase at the retest of task group A1 after
incremental learning of A2. On the other hand, the errors for task
group B1 decrease after the learning of B2.
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Fig. 7. Likelihood, error, and gate opening for each sequence with respect to training time. In the likelihood plots, the error plots, and the gate opening plots, black lines

indicate corresponding values for subnet 1 and gray lines indicate corresponding values for subnet 2.
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This observation is interpreted as the system modifying its
structure differently when it adapts to the task group changes of
(A1! A2) and (B1! B2). In the second session, the newly
provided teacher signals work (i) to preserve the method by
which to differentiate two task groups by two subnets and (ii) to
interfere with how to generalize sequences in task group A1
(by subnet 1) and to preserve how to generalize sequences in task
group B1 (by subnet 2). This result is due to the difference in the
inconsistency between the task change for Ax and that for Bx, as
previously introduced in the task design section.
4. Concluding remarks

In this report, we have presented a novel architecture based on
the mixture of experts model and the PB method that demon-
strates the generalization and differentiation capabilities for
motor sequence learning. A distance measure for task groups is
proposed in order to quantify the difficulty balance between
grouping and separating task sets. The incremental learning
experiment demonstrates that the newly assigned task group
interferes with the previous learning in one case and preserves it



ARTICLE IN PRESS

SEQUENCE NUMBER

TASK GROUP A2 TASK GROUP B2

gate opening

PB  vector
0.0

1.0

subnet 2
subnet 1 0.00

0.25
0.50
0.75
1.00

node 0 
node 1 

PB node value 

Fig. 8. Self-organized gate profile and independent growth of PB vectors after the second session. Acquired PB vector values are represented in gray scale.
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Fig. 9. Error comparison for three sessions.
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in another case. Allowing the previously acquired subnet to be
flexible in subsequent additional learning may provide a new
perspective on the modularity of skill and knowledge. The
acquired modular structure is the basis for processing ongoing
information signals, but in some cases the structure itself is
modified by the current task. The plasticity of a learner to a novel
situation is a source of rich dynamics in the skill acquirement
process.
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