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Abstract

This study demonstrates that the prediction error minimization (PEM) mechanism can
account for the emergence of reciprocal interaction between two cognitive agents. During
interactive processes, alternation of forming and deforming interactions may be triggered
by various internal and external causes. We focus in particular on external causes derived
from a dynamic and uncertain environment. Two small humanoid robots controlled by
an identical dynamic neural network model using the PEM mechanism were trained to
achieve a set of coherent ball-playing interactions between them. The two robots predict
each other in a top-down way while they try to minimize the prediction errors derived
from the unstable ball dynamics or the external cause in a bottom-up way by using the
PEM mechanism. The experimental results showed that switching among the set of trained
interactive ball plays between the two robots appears spontaneously. The analysis clarified
how each complementary behavior can be generated via mutual adaptation between the
two robots by undertaking top-down and bottom-up interaction in each individual dynamic
neural network model by using the PEM mechanism.

1 Introduction

Humans are interdependent agents that interact with others. As an example of human inter-
actions, consider a situation where two children are rolling a ball between themselves. Once
organized, the cooperative ball-playing interaction might be compulsorily deformed due to two
different kinds of causes. One kind is an internal cause, such as one child deciding to monop-
olize the ball. The other kind is an external cause generated by the environment, such as the
ball unpredictably rolling beyond the children’s control. Due to the many possible causes, the
alternation of forming and deforming interaction can appear in a spontaneous way.

Several studies have conducted experiments on interactions between two agents in simulated
environments [1–3] and between robots in physical environments [4, 5]. For example, Ikegami
and Iizuka [1] demonstrated the emergence of turn-taking behavior between two agents, referred
to as coupled dynamical recognizers [6], each of which is equipped with a single recurrent
neural network (RNN) [7,8]. This computer simulation dealt with simple turn-taking behavior
between a leader and a follower in a two-dimensional space. Hinoshita et al. [4] used RNNs to
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realize multi-modal interactions between two robots with voice and motion. In this framework,
each robot is equipped with two associated RNNs, one for voice and the other for motion
generation. Although this demonstrated more complex interactions between robots in a physical
environment, turn-taking between a speaker/actor and a listner/observer must be explicitly
performed by an experimenter. In this study, we speculate that an additional mechanism,
namely prediction error minimization (PEM) [9–12], is essential to understanding the emergent
aspect of interactions between two cognitive agents in a physical environment.

PEM can be implemented by a computational framework called predictive coding [13] or
predictive processing [14], which performs dense interactions between top-down predictive and
bottom-up recognition processes. In the field of theoretical neurobiology, Friston et al. [15]
proposed a Bayesian framework called active inference in which both action and perception
aim to minimize prediction errors by changing sensory inputs and predictions, respectively.
Based on this framework, Friston and Frith [16,17] simulated birdsong communication between
synthetic songbirds or two agents with the PEM mechanism. In the field of cognitive robotics,
Tani [9] proposed a connectionist framework called RNN with parametric bias (RNNPB), where
PB is a static vector attached to the conventional RNN. On the basis of this framework, Noda
et al. [18] demonstrated flexible switching of object handling behaviors by a humanoid robot
with the PEM mechanism. In their work, the robot first learned two ball-playing behaviors,
“rolling a ball” and “lifting a ball,” depending on the ball dynamics by optimizing the respective
PB. After the learning process, the robot could switch its behavior by inferring the PB that
minimizes prediction errors generated by unstable ball dynamics or external causes. Although
these studies clarified how the PEM mechanism can work effectively in some cognitive tasks,
the former showed that an agreement between two agents can be reached by the PEM in a
simple simulation setting and the latter showed that a complex but a single humanoid robot
can achieve coherent interaction with the environment (a ball) in the physical setting.

The current study considers the interaction between two cognitive agents with the PEM
mechanism situated in a physical environment. The beginning of this section describes the
internal and external causes for forming and deforming interactions. For simplicity, we focus
on the influence of external causes from the surrounding environment. For this purpose, we
extend the experiment on the switching of ball-playing behaviors by Noda et al. [18], which also
considered the influence of external causes derived from unstable ball dynamics. We employ
two robots, each implemented with an RNN-based model with the PEM mechanism in the
environment. Each robot first learned a set of ball-playing behaviors through interaction with
a human experimenter, and then encountered each other. In the first interaction, the human
experimenter provides an external cause to deform the current interactive behavior. The robot
is evaluated with and without the PEM mechanism to determine whether it can form the
corresponding interactive behavior. This forcibly deformed interaction is unidirectional, as
demonstrated in [19, 20]. The second experiment considers bidirectional interaction between
the two robots with the PEM mechanism in the environment. In this experiment the two
robots, each of which tries to minimize prediction errors, influence each other. The experimental
results demonstrate the emergent and spontaneous aspects of reciprocal interaction in terms of
the PEM mechanism.

2 Computational Model

As a connectionist framework to realize the PEM mechanism between two robots, this study
adopted a stochastic continuous-time RNN (S-CTRNN) [19, 21], in which we assigned several
context units as PB units. S-CTRNNs can learn to generate predictions about the mean and
variance of the succeeding sensory states, which are assumed to follow a Gaussian distribution,
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by receiving the current states. The variance prediction mechanism enables an S-CTRNN to
achieve more stable learning of target data with fluctuations than the conventional CTRNN
can, as demonstrated in [22].

The following subsections describe the forward dynamics of each neural unit and optimiza-
tion method with the PEM mechanism in the learning and generation phases.

2.1 Forward Dynamics

The internal state u
(s)
t,i (1 ≤ t) of each neural unit is described by
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Here, II, IP, IC, IO, and IV are the index sets for the input, PB, context, output, and variance
units, τi is the time constant of the ith context unit, wij is the connection from the jth to the

ith unit, x
(s)
t,j is the jth input state at time step t of the sth sequence, c

(s)
t,j is the jth context

state, p
(s)
t,j is the jth PB state, and bi is the bias of the ith unit. From this equation, the PB

states can be regarded as a particular case of the context states, whose time constant is infinite.

In this study, the value of the initial internal state u
(s)
0,i of the context units (i ∈ IC) was set

to zero, indicating a neutral state independent of the temporal sequence s. In contrast, that of
the PB units (i ∈ IP) was optimized for each sequence in the learning phase, as described later.

The internal state of each unit is activated by using the respective nonlinear functions as
follows:

p
(s)
t,i = tanh(u

(s)
t,i ) (i ∈ IP), (2)

c
(s)
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(s)
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y
(s)
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(s)
t,i ) (i ∈ IO), (4)

v
(s)
t,i = exp(u

(s)
t,i ) (i ∈ IV). (5)

2.2 Optimization Method

Under the Gaussian assumption, we can write the following objective function of the negative

log-likelihood by using the target ŷ
(s)
t,i , output (mean) y

(s)
t,i , and variance v

(s)
t,i states (up to

constant terms):
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2

2v
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This negative log-likelihood is formally equivalent to the free energy employed in the active
inference scheme [15]. From the equation, we can see that minimizing the objective function
corresponds to minimizing the variance or uncertainty and (precision-weighted) prediction error.
In what follows, we consider two ways of minimizing the function by accumulating it over the
long term in the learning phase and over the short term in the generation phase.
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In both the phases, parameters or PB states at epoch n collected by θn are updated using
a gradient descent on an accumulated negative log-likelihood L:

θn = θn−1 + α∆θn, (7)

∆θn = −∂L
∂θ

+ η∆θn−1. (8)

Here, α is the learning rate and η is a parameter representing the momentum term. The negative
log-likelihood accumulated in a different way in each phase is described below.

2.2.1 Learning Phase

In the learning phase, all time-invariant parameters, including connections wij , biases bi, and

initial internal states of the PB units u
(s)
0,i (i ∈ IP), which are collected by θ above, are

optimized off-line using recorded target sequences. The optimization is performed by minimizing

the following sum of L(s)
t,i with respect to all the dimensions, time steps, and sequences:

L =
∑
s∈IS

T (s)∑
t=1

∑
i∈IO

L(s)
t,i . (9)

Here, IS is the data index set, and T (s) is the length of the sth temporal sequence. The gradient
of the objective function with respect to each parameter can be obtained by back-propagation
through time (BPTT) [23], as described in [21].

2.2.2 Generation Phase

In the generation phase after the learning phase, only the internal states of the PB units at time

step t−W (u
(s)
t−W,i) are allowed to be optimized on-line, and the other parameters are fixed. The

optimization is performed by minimizing the following sum of L(s)
t′,i over the immediate past:

L =
t∑

t′=t−W+1

∑
i∈IO

L(s)
t′,i. (10)

Here, W is the length of the time window moving along the increment of the time step t′.

3 Neurorobotics Experiment

3.1 Task Design

We designed a ball-playing interaction between two small humanoid robots (NAO; Aldebaran
Robotics). Figure 1 shows a schematic illustration of our framework for a neurorobotics exper-
iment in which both the robots (Robot 1 and Robot 2) were simultaneously controlled by an
identical S-CTRNN. These robots with the PEM mechanism first used the S-CTRNN to learn
a set of ball-playing behaviors off-line by using recorded data obtained in interaction between
the robot and a human experimenter. In this learning phase, the S-CTRNN learned the rela-
tionship between visual and proprioceptive states by optimizing connections, biases, and PB
states. After predictive learning of visuo-proprioceptive states, the human experimenter was
replaced with the other robot and the two robots interacted. Unstable ball dynamics in the
real environment provided an external cause triggering switching of PB states for minimizing
prediction errors to adapt to the current situation. In other words, the ball dynamics stimu-
lated the unpredictable alternation of forming and deforming interactive behaviors and led to
spontaneous interaction.
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Figure 1. Framework for a neurorobotics experiment. The robot on the left is Robot 1, and that on the right is
Robot 2. The solid lines of the actual and predicted states represent proprioception and the dotted lines represent
vision.

3.2 Interactive Behavioral Patterns

We considered four behavioral patterns, shown in Fig. 2. These patterns can be classified
into two categories according to coordination level. The first class, whose conformity is high,
consists of rolling the ball with the right (R) and the left (L) hand. This class is characterized
in that the timing of these behaviors strongly depends on the partner. Therefore, the robot
must learn the relation between self and environment and wait for the ball to come. The other
class involves self-play (S) and attraction (A), whose conformity is low. These behaviors can
be freely executed, because there is no conflict between them. These behavioral patterns were
represented by 10-dimensional time-series data consisting of two-dimensional visual states (the
ball position in a visual image) and eight-dimensional proprioceptive states (four for each of the
left and right arm).

3.3 Parameter Setting for the Experiment

The numbers of the input, output, and variance units of the S-CTRNN were NI = NO = NV =
10. These were determined by the dimension of the robot’s visuo-proprioceptive states. The
number and time constant of context units were NC = 50 and τC = 4, respectively. There
were two context units assigned as PB (NP = 2) whose time constant was infinite. In the
learning phase, the parameters collected by θ were optimized off-line for 300, 000 times. In the

generation phase, the internal states of the PB units at time step t−W (u
(s)
t−W,i) were optimized

on-line for 20 times where the window length was W = 20.

4 Results and Discussion

To test the capability of the PEM mechanism, we compared the results from two experiments.
In the first case, a human experimenter interacted with a robot trained with S-CTRNN in
the physical environment in the same way as in the data-recording phase. The experimenter
acted on the environment to provide an external cause (a change of ball dynamics) as a trigger
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Right (R) Left (L)

Self-play (S) Attract (A)

Figure 2. Four interactive behavioral patterns that each robot learned with the S-CTRNN in the experiment. The
upper-left and right figures show the ball-rolling behaviors with the right (R) and the left (L) hand, respectively.
The lower-left and right figures show the self-play (S) and attract (A) behaviors.

for deforming the ongoing interactive behaviors. We observed whether the robot could switch
behavioral patterns in response to the change of the environment and evaluated the genera-
tion ability of the robot with and without the PEM mechanism. We expected the results to
elucidate the importance of the PEM mechanism in reforming interactive behavior from the
deformed status. The second experiment simultaneously involved the two robots with the PEM
mechanism. The two robots spontaneously influenced each other to demonstrate phenomena oc-
curring between the robots. We anticipated that the PEM mechanism would initiate reciprocal
interactive behavior between the two robots.

4.1 Interaction between the Robot and the Experimenter

Figure 3 shows the generated results of the robot with and without the PEM mechanism. An
experimenter interacted with the robot by manually rolling the ball to a place that the robot
had previously learned. Within the initial 250 time steps, the experimenter cooperated with the
robot to complete the complementary ball-playing interaction. In both cases, the robot could
predict the correct values for proprioception and vision with relatively low prediction error.
This phenomenon indicates successful forming of interactive behavior between the robot and
the experimenter.

However, when the experimenter changed the position of the ball, the robot without the
PEM mechanism could not switch behaviors or interact with the experimenter. In the case
without the PEM mechanism, the PB dynamics were unable to be optimized, retaining initial
values. In contrast, the robot with the PEM mechanism mutually adapted to the experimenter
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Figure 3. The generated results of robots interacting with the human experimenter. The right and left sides
respectively show the case with and without the PEM mechanism. The figures in the first row extract the output
results of proprioception from eight dimensions to two dimensions. The figures in the second and third rows
respectively show the vision output states and the corresponding prediction error. The figures in the last row
show the PB states.

and inferred complementary behaviors from experience. The PB states were dynamically deter-
mined in the direction of minimizing the prediction error due to changes in ball position. The
PEM mechanism thus initiated interactive behavior between the robot and experimenter. This
phenomenon can be regarded as unidirectional interaction in which one agent (the robot) was
influenced by a companion agent (the human experimenter).

4.2 Interaction between the Two Robots

After confirming the generation ability of a robot with the PEM mechanism while interacting
with a human experimenter, we employed the same framework to the two robots. Figure 4
depicts the generated results of interactive behavior between the two robots. Within the initial
250 time steps, both robots indeed generated behavioral patterns corresponding with the PB
state and retained low prediction errors. This period was taken as the realization of forming
interaction.

However, when the ball abruptly rolled to an unexpected location owing to a collision be-
tween the ball and a robot’s hand, both robots’ predictions failed. The interaction was deformed
and the prediction error became extremely large. To adapt to this perturbation, the PEM mech-
anism optimized the PB states by following the direction of minimizing the prediction error.
Robot 1 achieved a behavior switch from self-play (S) to left (L), and Robot 2 switched its
behavior from attract (A) to right (R). In accordance with their past learning experience, both
robots successfully switched their behavioral patterns, thereby minimizing the prediction error.
The interaction was well organized, and the two robots were able to maintain an interrelated
relationship.

At around time step 650, the ball again rolled to an unexpected position from one side of
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Figure 4. Interaction between Robot 1 and Robot 2, with results separately shown as blue and red lines. The first
two panels show the output states for proprioception. For clarity, two of the eight dimensions in the proprioceptive
outputs are extracted. The second two panels show the output states for vision. The third and fourth panels
respectively illustrate the prediction error for vision and the PB states.
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Robot 1 Robot 2

(1)S A

(3)L R
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(2)

(4)

(6)R L

Figure 5. The actual process of interaction between Robot 1 (left) and Robot 2 (right). The phases (1), (3),
and (6) show the period of performing interactive behaviors where the two robots completed the complementary
tasks shown with the blue and red labels. The other phases (2), (4), and (5) show the transition period without
performing specific behavioral patterns.

the workspace to another. When rolling to the other side, the ball must cross in front of the
robots. Therefore, from 650 to around 800, Robot 2 attempted optimization to the correct PB,
but the optimization was affected by previous input and thus modified to the wrong direction.
Although Robot 2 failed to immediately optimize the PB states, it updated to the correct PB
after a short time and adapted to the current situation. The deforming interaction was thus
repaired and turned to the forming interaction. Although we show only a few possible behavior
switches in Fig. 4, the robots successfully switched to all learning behavioral patterns in the
experiment.

Figure 5 shows the actual process of interaction between the two robots mutually adapting to
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Figure 6. The PB states of two robots interacting during the generation phase. Black stars indicate learning
results, and blue and red points respectively represent the generated PB states of Robot 1 and Robot 2. Black
arrows show the direction of behavior transitions.

each other and switching their own behaviors to those relevant to the position of the manipulated
object. Furthermore, when the two robots performed left (L) and right (R) behaviors, they
attempted to synchronize their actions with the companion agent to complete complementary
tasks. We thus observed correlation and coherent interaction between the robots. Figure 6 plots
the PB states during the generation phase, and shows the transitions among the four learned
behavioral patterns and that the modified PB dynamics were close to the learning results.
Although forming and deforming of interactive behaviors spontaneously appeared, the PEM
mechanism allowed the robots to react to changes with external causes. This phenomenon can
be regarded as bidirectional interaction in which both agents influence each other.

5 Conclusion

We speculated that the PEM mechanism is essential for realizing the emergence of interactive
behavior. We focused on external causes by using uncertain ball dynamics as a trigger for
alternation of forming and deforming interactions in an unpredictable manner. We first tested
the capability of the PEM mechanism via a robot controlled by a trained S-CTRNN model
interacting with a human experimenter. Comparison of the experimental results between the
case with and without the PEM mechanism indicated that the PEM mechanism is effective
for the robot to adapt to the human movement in a unidirectional way. Then, the two robots
experiments using identical dynamic neural network model was conducted to examine the ef-
fectiveness of the PEM mechanism in bidirectional adaptation which is required for achieving
various types of social interaction between cognitive agents. The experimental results showed
that complementary behaviors between the two robots can shift spontaneously among a set of
trained ones as triggered by the potential instability in the physical ball interaction. It was
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concluded that the top-down and the bottom-up interaction facilitated by the PEM mechanism
can afford autonomous recovery from a particular interaction pattern once deformed by the
external instability cause to newly formed interaction patterns for social cognitive agents.

This study used only ball position information for robot learning to address the problem of
external causes generated by manipulated objects. Our future work will more comprehensively
consider external causes to better deal with influences from the companion agent by including
visual information about the partner’s hands. We will also consider internal causes due to
self-planning (e.g. ignoring others or preferring specific behaviors), as well as the influence of
variance estimation contributing to the autonomous scaling of prediction error and the attention
mechanism [24].
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