
 

 

Abstract—This study investigates the seamless integration of 

cognitive skills, such as visual recognition, attention switching, 

action preparation and generation for a humanoid robot. In our 

preliminary study [1], the deep dynamic neural network model 

was introduced to process spatio-temporal visuomotor patterns. 

In the current study, we extended the previous model further to 

enhance its capability of handling sequential visuomotor 

information as well as forming visuomotor representation. We 

conducted synthetic robotic experiments in which a robot learned 

goal-directed actions of reaching to grasp objects under two 

different experimental settings. In the first experiment, a task of 

reaching to grasp objects was conducted under parameterized 

visual occlusion condition for the purpose of examining the 

memory capability in the model. In the second experiment, the 

action of reaching to grasp objects was incorporated with visual 

recognition of human gesture patterns with using the working 

memory. The experimental results revealed that the proposed 

model was able to generalize its reaching and grasping skills in the 

novel situations. Furthermore, the analysis using the 

dimensionality reduction technique on neuron activation verified 

that the proposed model was capable of manipulating high 

dimensional spatio-temporal visuomotor patterns by forming 

their dynamic link to the actional intention developed in the 

higher level of the model via iterative learning. 

Index Terms—Deep learning, developmental robotics, 

humanoids, visuomotor coordination.  

I. INTRODUCTION 

Deep learning [2] is a fast-growing field in machine learning 

and artificial intelligence. It has attracted widespread attention 

by showing outstanding performance in the several tasks, such 

as visual recognition, speech recognition, text pattern 

recognition and many others. (See [2] and [3] for a recent 

review on deep learning.) One of the most important 

characteristics of deep learning is that it can autonomously 

extract task-related features in the data without the necessity of 

hand-engineered feature extraction methods [2-4].  
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Consequently, deep learning also seems promising in the 

robotics context. By properly utilizing deep learning 

techniques, a robot can learn directly from its raw sensorimotor 

data acquired through dynamic interaction with its environment 

[4].  

Recently, Hwang and colleagues [1] have proposed a deep 

neural network model called Visuo-Motor Deep Dynamic 

Neural Network (VMDNN) which was designed to process and 

integrate raw visuomotor patterns. The VMDNN model 

consisted of three different types of subnetworks: Multiple 

Spatio-Temporal scales Neural Network (MSTNN) [5], 

Multiple Timescales Recurrent Neural Network (MTRNN) [6] 

and PFC (Prefrontal Cortex) subnetworks. MSTNN and 

MTRNN were used to process dynamic visual images and to 

control robot’s action and attention respectively. Those two 

subnetworks were tightly integrated through the PFC 

subnetwork so that the whole system could process dynamic 

visuomotor patterns in a seamless manner. However, there are 

several limitations in this study. The PFC layer was limited, 

such that it was not equipped with the recurrent loops and 

backward connection from the proprioception. Our preliminary 

study indicated that this prevented the generalization capability 

of the model especially in the task of object grasping associated 

with human gesture recognition. 

In the current study, we extended the previous VMDNN 

model further by introducing recurrent loops in the PFC 

subnetwork as well as the backward connection from MTRNN 

to PFC. We conducted synthetic robotics experiments to 

evaluate the model and to understand possible biological 

mechanisms of learning goal-directed actions. We particularly 

focused on the developmental learning aspect of visuomotor 

coordination for reaching and grasping behavior of a humanoid 

robot. It requires a robot to coordinate a set of cognitive skills 

such as visual recognition, attention switching, action 

preparation and generation. In the first experiment, we 

examined the model in a visual occlusion experiment. During 

the training phase, a robot was learned to grasp a target object 

located on a task space. During the occlusion testing, the visual 

input to the network was unexpectedly occluded during 
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reaching. This was to verify whether the network is equipped 

with a sort of internal memory so that it can be generalized to 

the case when the visual information is completely occluded. In 

the second experiment, a robot was learned to recognize 

gestures demonstrated by several human subjects and to grasp 

the target object specified by the gestures. In both experiments, 

we examined the model’s generalization capability to the 

unlearned situations. In addition, we clarified the internal 

representations by analyzing the neuron activation using 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 

dimensionality reduction algorithm [7] 

II. THE DEEP NEURAL NETWORK MODEL 

In this section, we describe the dynamic deep neural network 

model called Visuo-Motor Deep Dynamic Neural Network 

(VMDNN) [1] in detail. It was designed to process and 

integrate raw visuomotor information through a hierarchical 

structure which is considered as the essential characteristic of 

cortical computation [8, 9]. Also, the VMDNN model is 

multimodal such that both perception and action are not 

separated but tightly intertwined within the system. The model 

is composed of three subnetworks: (1) vision subnetworks that 

process dynamic visual images (MSTNN), (2) action 

subnetworks that control robot’s action and attention (MTRNN) 

and (3) prefrontal cortex (PFC) subnetwork which is located on 

the top of those two subnetworks and dynamically integrates 

them.  

 
Fig. 1.  The VMDNN model consisting of three distinctive subnetworks: 

MSTNN for dynamic vision processing (left), MTRNN for action generation 

(right) and PFC for integration (top) 

A. MSTNN (Multiple Spatio-Temporal Scales Neural 

Network) 

MSTNN (Multiple Spatio-Temporal Scales Neural Network) 

was employed in the model to process dynamic visual images 

perceived while the robot is conducting a task. MSTNN is an 

extension of Convolutional Neural Network (CNN) with leaky 

integrator neural units with a different time constants [5]. 

Unlike CNN [10] which was designed to handle static patterns, 

the MSTNN was designed to process dynamic patterns, making 

it an adequate candidate for robotics applications. In the model, 

the MSTNN subnetwork consists of vision input (VI) layer, 

MSTNN-fast (VF) layer which has short distant connectivity 

with smaller time constants and MSTNN-slow (VS) layer 

which has longer distant connectivity with bigger time 

constants. Each layer has a set of feature maps consisting of 

neural units and has forward connections from VI to PFC.  

B. MTRNN (Multiple Timescales Recurrent Neural Network) 

In this model, MTRNN (Multiple Timescales Recurrent 

Neural Network) was adopted for behavior generation and 

attention control. MTRNN [6] has a hierarchical structure 

consisting of a multiple CTRNN with leaky integrator neural 

units. The lower level has a smaller time constant showing fast 

dynamics whereas the higher level has a bigger time constant 

exhibiting slow dynamics. Due to this temporal hierarchy, 

MTRNN can learn compositional action sequences and the 

meaningful functional hierarchy can emerge within the system 

[6, 9]. In our model, the MTRNN subnetwork has a hierarchy 

consisting of MTRNN-slow (MS) showing slow dynamics with 

the bigger time constant, the MTRNN-fast (MF) showing fast 

dynamics with smaller one and the MTRNN-output (MO) with 

the smallest one. MS and MF are asymmetrically connected to 

every neuron in the neighboring layers including itself. MO is a 

softmax layer and it receives inputs from MF and generates 

behavior outputs and attention control signals. 

C. PFC (Prefrontal Cortex) 

On the top of those two dynamic networks, we allocated the 

PFC (Prefrontal Cortex) layer consisting of a set of 

leaky-integrator neurons. In this study, we extended the 

previous VMDNN model by introducing the recurrent loops in 

the PFC layer as well as the backward connection from MS to 

PFC. Consequently, the PFC layer receives inputs from VS, MS 

and itself and it sends output to MS. This layer is characterized 

by the following aspects. First, the neurons in the PFC layer are 

assigned with the largest time constant so that it can show the 

slowest-scale dynamics. Therefore, it is able to maintain the 

higher-level task-related information at the PFC layer 

throughout the task phases. Second, the PFC layer has recurrent 

connections which are essential to handle dynamic sequential 

sensorimotor flows by keeping track of time concept [4, 11-13]. 

Third, the PFC layer is designed to integrate two monomodal 

subnetworks (MSTNN and MTRNN) and form multimodal 

representations abstracted from raw visuomotor data.  

D. Action Generation Mode 

The internal states of all neural units were initialized with 

neutral values at the onset of action generation mode. Then, the 

grayscale pixel image obtained from robot’s camera was given 

to the vision input layer (VI) and each neural unit’s internal 

state and activation in every subnetwork were computed from 

VI to MO successively. The outputs at the MO layer consisting 

of arm and hand movements as well as attention control signals 

were transformed to control the robot’s actual joints and 

attention.  

At each time step t, the internal state 𝑢𝑖
𝑡𝑥𝑦

 and the dynamic 

activation v𝑖
𝑡𝑥𝑦

 of the neural unit located on the (x, y) position 

in the ith feature map of each MSTNN layer (i ∈ VF ˅ VS) is 

determined by the following formula: 
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τ is the time constant, Vj is the feature maps in the previous 

layer (if i ∈ VF, then Vj = VI and if i ∈ VS, then Vj = VF), kij is 

the value of the kernel, b is the bias, and * is the convolution 

operator.  

From the PFC layer to the MO layer, the internal state 𝑢𝑖
𝑡 and 

the dynamic activation y𝑖
𝑡  of the ith neuron in the PFC and 

MTRNN layers (i ∈ PFC ˅ MS ˅ MF ˅ MO) can be computed by 

the following equations: 
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τ is the time constant, kij and wij is the value of the kernel and 

weight from the jth unit to the ith unit and b is the bias. 

E. Training Mode 

The model was trained with visuo-proprioceptive sequences 

under a supervised learning framework. The training data is 

raw visuomotor data obtained from a repeated tutoring in 

which a robot was manually operated without the neural 

network. Backpropagation through time (BPTT) [14] was used 

to learn the parameters of the network. At the beginning of the 

training, the learnable parameters in the MSTNN subnetworks 

were initialized by means of the pre-training. Previous studies 

[3, 15] have shown that pre-training can provide efficient 

initialization of the network parameters. Pre-training of 

MSTNN was conducted by allocating the softmax output layer 

on the top of PFC and removing the connections from the 

MTRNN subnetworks including recurrent connections at PFC 

layer. In this configuration, the system was equivalent to the 

typical MSTNN model and it was trained to classify the visual 

images. Once the pre-training is completed, the parameters in 

the visual pathway were used in the proposed model as the 

initial values. 

After the pre-training, the end-to-end training was conducted 

in which the network’s entire learnable parameters (wij, kij, bi) 

were updated to minimize the error E represented by 

Kullback-Leibler divergence between the teaching signal �̅�𝑖
𝑡 

and the network’s output 𝑦𝑖
𝑡.  

𝐸 = ∑ ∑ �̅�𝑖
𝑡𝑙𝑜𝑔

�̅�𝑖
𝑡

𝑦𝑖
𝑡

𝑖∈𝑀𝑂𝑡

 (5) 

A stochastic gradient descent method was applied during the 

training and the learnable parameters were updated when each 

visuo-proprioceptive sequence was presented. 
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where η is the learning rate and n is an index of the learning 

step. Also the weight decay method was used to prevent 

overfitting [10] and the weight decay rate was set to 0.0005. 

III. EXPERIMENT SETTINGS 

We conducted two experiments to evaluate the proposed 

model. In the first experiment (Experiment I), we examined the 

model in reaching and grasping an object task. In the second 

experiment (Experiment II), we further extended the first 

experiment by incorporating human gesture recognition. In the 

following sections, we describe the experiment settings that 

were used throughout the two experiments. 

 
Fig. 2.  iCub simulator used in our experiments. The figures are showing two 

different ways of reaching and grasping: (a) reaching and grasping a tall object 

from side and (b) reaching and grasping a long object from above. (c) 11 object 

locations on a task space denoted by a number. 

A. Robotic Platform 

Simulation of the iCub humanoid robot (Fig. 2) was used for 

the experiments. iCub [16] is a humanoid robot in a child-like 

shape and it has 53 degrees of freedom (DoF) distributed in the 

entire body. Its simulator provides an adequate platform for 

studying developmental robotics since the robot’s physical 

interaction with the environment can be well reconstructed 

with a good accuracy [8, 17, 18].  

Regarding the visual input to the network, we used the 

dynamic visual images obtained from iCub simulator’s camera 

embedded in its left eye. We first resized those images to 64 (w) 

× 48 (h) and then, converted to grayscale and normalized to -1 

to 1. Regarding the joints of the robot, we used the robot’s right 

arm consisting of 7 DoF (shoulder’s pitch, roll, yaw, elbow, 

wrist’s pronosupination, pitch, and yaw). In addition, the 

network also outputted the level of extension or flexion of the 

fingers’ joints for grasping as similar to [19]. Furthermore, we 

used two attention control mechanisms. First, two joints in the 

neck (pitch and yaw) were used to orient its head so that the 

attended object can be located at the center of its view. Another 

attention control mechanism is foveation. That is, the 

resolution of the visual frames to the neural network varied 

depending on the level of focus. Throughout the experiments, 

two different types of objects were used: a tall object with a 

size of 2.8cm × 5cm × 10cm and a long object with a size of 



 

2.8cm × 10cm × 5cm. The object was placed on 11 positions 

distributed on XY-plane of the task space with 5 different 

orientations (-45°, -22.5°, 0°, 22.5°, 45°).  

B. Network Configurations 

The VMDNN model used in our study consists of 7 layers 

and each layer consists of a set of feature maps. The model 

parameters, such as a number and the size of feature maps, 

kernel size vary between the layers. Table I illustrates the 

settings of the parameters used throughout the experiments. 
 

TABLE I 

PARAMETER SETTINGS 

Layer 
Number of 

Feature Maps 

Size of 

Feature Map 

Kernel 

Size 

Sampling 

Factor 

VI 1 64×48 - - 

VF 4 15×11 8×8 4 

VS 8 5×3 7×7 2 

PFC 20 1×1 5×3 1 

MS 30 1×1 - - 

MF 50 1×1 - - 

MO 110 1×1 - - 

Regarding the time scale properties, we mainly compared 4 

different temporal scale configurations in the visual pathway 

and PFC of the model: CNN with fast-scale PFC, CNN with 

slow-scale PFC, MSTNN with fast-scale PFC and MSTNN 

with slow-scale PFC. For each condition, the time constants 

were set differently (Table II). Throughout the experiments, the 

time constants of MS, MF and MO were set to 70, 2 and 1 

respectively.  
TABLE II 

FOUR TYPES OF NETWORK CONDITIONS AND TIME CONSTANT SETTINGS 

Type of  

Vision Layer 

PFC 

Dynamics 

Time Constant Settings 

VF VS PFC 

CNN Fast 1 1 1 

CNN Slow 1 1 150 

MSTNN Fast 1 15 1 

MSTNN Slow 1 15 150 

 

IV. EXPERIMENT 1: REACHING AND GRASPING AN OBJECT 

In the first experiment, we conducted an experiment in 

which a robot reaches and grasps the target object on the task 

space. The overall task flow is as follows: First, at the home 

position, the robot faces the black screen located in front of it. 

Then, the robot shifts attention to the task space on which the 

target object (either long or tall) is located. Then, the robot 

attends to the object by locating the target at the center of the 

view through orienting its head. Once the target object is 

attended, the robot starts reaching and grasping the target 

object. Please note that the way of reaching and grasping is 

different depending on the type of object (Fig. 2). When the 

hand reaches close to the object, the robot controls the level of 

foveation so that the visual image containing the object and 

robot’s hand can be given to the network with a higher 

resolution (please see the supplementary video). 

A. Experiment Settings 

We conducted supervised end-to-end training on the 

proposed model. The training data consisted of vision-motor 

pairs and it was acquired from repeated tutoring in which a 

robot was manually operated by the experimenter. During the 

training, the network learned 110 cases consisting of 11 

different object positions, 2 different object types (tall and long) 

and 5 different object orientations. During training, the network 

parameters in the MSTNN layers were first initialized by 

means of the pretraining as described in Section III. In the 

pretraining, the MSTNN layers were trained to classify the 

location, type and orientation of the object. The other learnable 

parameters in the network were randomly initialized between 

-0.025 to 0.025. The network was trained for 13,000 epochs 

and the learning rate was set to 0.01.  

During the testing, we examined the proposed model in a 

visual occlusion experiment (please see the supplementary 

video). Vision input to the network was blocked at the 30th 

(onset of reaching), 50th and 70th (onset of grasping) step. The 

main focus of this experiment is to verify whether the network 

is equipped with a sort of internal memory so that it can be 

generalized to the case when the visual information is 

completely occluded. From the training patterns, we randomly 

selected 2 orientations in each type of object for 11 orientations 

(a total number of 44). We also examined the network’s 

generalization capability under the various object variations by 

testing 44 trials in which the object was randomly placed with 

varying orientations from -45° to 45° on the task space.  

B. Results 

The performance of the model was evaluated in terms of a 

success rate across the training and testing trials. Each trial was 

evaluated as success if the robot grasped the target object and 

failure otherwise. Fig. 3 illustrates the success rate of (a) 

training and (b) testing trials with respect to the different visual 

occlusion timing with the aforementioned 4 different timescale 

configurations. As we expected, the performance generally 

degraded when the vision input was blocked at the earlier 

phases. Especially, when the visual input was occluded at 30th 

step (onset of reaching), the performance degraded drastically 

except for the MSTNN with slow-scale PFC condition. We 

assumed that the model’s memory capability played important 

role especially when the vision input was blocked at the earlier 

stage. That is, the robot was able to maintain information about 

the object’s position and orientation throughout the task phases 

by means of the memory capability. When the vision input was 

not blocked, the all conditions showed the high success rate in 

both training and testing patterns, meaning that the model 

successfully learned the training data and it was able to 

generalize reaching and grasping skill to the unlearned object 

positions and orientations.  

 
 

See the supplementary videos at 

http://neurorobot.kaist.ac.kr/video/jungsik/icdl2016.html 



 

 
 

         

Fig. 3.  The success rate of the four different network configurations in the 

visual occlusion experiment. (a) testing on the learned object positions and 

orientations (training trials) and (b) testing on the unlearned object positions 

and orientations (testing trials). 

 
 

           
 

Fig. 4.  The development of internal representation at VS, PFC and MS in three 

different task phases. Each point represents a single trial and the distance 

between those points represents the relative similarity between the trials. The 

shape and the color of each point denote the type of object and the type of 

human gesture respectively. The number next to each point denotes the object’s 

position. Please note that the way of grasping is different depending on the type 

of the object. 

C. Development of Internal Representation 

In order to clarify the internal representation emerged in the 

proposed model, we analyzed the neuron activation using 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 

dimensionality reduction algorithm [7] (Fig. 4). In the tSNE 

analysis, the neuron activation data were first transformed in 

the 10-dimensional PCA (Principal Component Analysis) 

space with setting the perplexity as 30. Similar to [20], we 

focused on the relationship between each patterns so we did not 

plot the axes which are varying between plots.  

When the robot first started observing the task space (a, d 

and g), the object representation regarding the location 

appeared in three layers but there was no clear distinction 

between the two types of object. This indicated that the model 

was able to recognize the location of the object at a glance but it 

was not sufficient to identify the type of the object. After the 

robot sufficiently observed the task space (b, e and h), the 

object representations began to be differentiated by both 

location and the type. Particularly, it is interesting that the MS 

layer already encoded the location and the type of the object 

even before the robot started orienting its head and reaching (h). 

This implied that an appropriate action for a given object was 

pre-planned or calibrated at a higher-level proprioception (MS) 

before the robot actually moved its head or arm. It is assumed 

that this preplanning capability might also have significant 

influences in the visual occlusion experiment, enabling the 

robot to reach and grasp the target object even without 

monitoring the target and the hand during reaching. Several 

studies in children development [21, 22] also argued that after 

the proprioceptive information is calibrated based on the visual 

information, vision is no longer necessary afterwards. This 

finding is similar to neuroscientific evidences in which F5 

neurons have been shown to encode show grip-specific 

information even no movement is intended [23]. The analysis 

also clearly illustrated the different representations developed 

in each layer. In the mid-reaching phase, MS layer mainly 

encoded the way of grasping which was equivalent to the type 

of object (i). In the PFC layer, the representation about the 

target objet was encoded with respect to both location of the 

object (horizontally) and the way of grasping (vertically). 

V. EXPERIMENT II: REACHING AND GRASPING AN OBJECT 

WITH GESTURE RECOGNITION 

In this experiment, we incorporated gesture recognition into 

the previous experiment. The robot first observed the human 

gesture and grasped the target object indicated by the gesture.  

Therefore, this task inherently requires the model to have 

working memory to maintain the gesture information 

throughout the task phases. The main task flow was as follows. 

The robot first observed a human gesture displayed on the 

screen (Fig. 5). There were four different types of human 

gestures indicating: the left, right, long and tall object. After 

observing the gesture, the robot shifted attention to the task 

space by orienting its head. Two objects consisting of one tall 

object and one long object were placed on the task space and 

the robot reached and grasped the target object which was 

indicated by the human gesture at the beginning of the task 



 

(please see the supplementary video). For example, when the 

human gesture was indicating the left object, the robot had to 

figure out the type and orientation of the object placed on the 

left side of the task space. Similarly, the robot had to figure out 

where the long object was when the gesture was indicating a 

long object. To successfully achieve this task, the robot had to 

maintain the information about human gesture displayed at the 

beginning and combine it with the object properties perceived 

while observing the task space and objects.  

 
Fig. 5.  The experiment setting in Experiment II. (a) Human gesture is 

displayed on the screen in front of the robot and two objects consisting of one 

tall and one long object are located on the task space. (b) Four different types of 

gesture 

A. Experiment Settings 

During the training, the robot learned 200 cases consisting of 

varying human gestures and object configurations. There were 

four different gestures indicating left, right, long and tall object. 

The 40-frame video clips of human gesture were displayed on 

the screen located in front of the robot. 7 different subjects’ 

gestures with several trials for each gesture were collected and 

they were randomly selected in the training dataset. Regarding 

the object’s configuration such as type, position and orientation, 

we used the same configuration as in Experiment I, except the 

one on the center of the task space. Two objects consisting of 

one tall and one long object were presented on the task space 

systematically so that the way of presenting objects did not bias 

the robot’s behavior. The parameters in MSTNN layers were 

initialized by the pre-training in which MSTNN was trained to 

classify the human gestures. The other parameters including 

those in the MTRNN layers were initialized by the values 

learned from Experiment I to enhance the convergence speed 

of the learning. The network was trained for 5,000 epochs with 

the learning rate of 0.01. 

During the testing, we examined the model’s generalization 

capability with respect to the novel situations. We examined 

the model by randomly locating the objects with a random 

orientation presented with gestures of a novel subject. For the 

training and testing trials, we examined 200 and 80 cases 

respectively. 

B. Generalization Performance of the Model 

Table III shows the success rate of each network condition in 

Experiment II. The success rate was computed the same way 

for the training and testing trials as in Experiment I. The 

MSTNN with slow-scale PFC condition showed the higher 

success rate than the other network conditions. The model 

successfully learned the training sequences and it was able to 

generalize to the different conditions. For the learned gesture 

trials and the learned object configurations (Training trials), the 

model showed the highest success rate (93.50%). In the testing 

trials, it was shown that the model was able to conduct the task 

even the object was randomly located on the task space and 

indicated by the novel subject that was not experienced during 

training (78.75%). It is worth noting that the model showed the 

relatively poor performances when it was set to have fast-scale 

PFC. This is due to the characteristics of the task which 

requires the robot to remember the gesture displayed at the 

beginning throughout the task phases.  
TABLE III 

THE SUCCESS RATE OF FOUR NETWORK CONDITIONS IN EXPERIMENT II 

Network Condition 
Success Rate 

Training Trials Testing Trials 

CNN + Fast PFC 51.50% 40.00% 

CNN + Slow PFC 86.50% 76.25% 

MSTNN + Fast PFC 84.50% 57.50% 

MSTNN + Slow PFC 93.50% 78.75% 

C. Development of Internal Representation 

We plotted the neural activation (Fig. 6) of VS, PFC and MS 

in three different task phases using t-SNE algorithm [7]. In VS, 

the visual information about the target object was mainly 

encoded. For example, when the robot started observing the 

target object (b), VS encoded the pair of two objects presented 

on the task space simultaneously and there was no clear 

distinction between the target object and ‘another’ object next 

to the target object. When the robot was reaching for the target 

object (c), VS encoded the target object’s location and type but 

the distinction was less clear than that in PFC (f). In PFC, there 

were four clusters representing the type of gesture at the end of 

observing the gesture (d). Then, those clusters started to 

develop progressively to represent the specific target object 

regardless of the human gesture (f).  This can be understood 

that the dynamic visual images of a human gesture were 

abstracted via hierarchical processing of the model and the PFC 

layer encoded one of the four “intentions” underlying the 

human gesture. While the robot was observing the target object 

and reaching for it, the human’s intention displayed by the 

gesture was translated into robot’s own intention for reaching 

and grasping the specific target object. This development of 

neuron activation also implied that such robot’s intentions were 

dynamically computed rather than directly mapped from visual 

perception. Interestingly, the activation of neurons in MS was 

clearly different even the robot was remained in the same 

position and did not start reaching (g and h). The four clusters 

representing the each type of gesture were formed at the end of 

observing the human gesture (g) and the onset of observing the 

target object (h). This implied that higher level proprioception 

(MS) was calibrated based on the perceived visual information 



 

(gesture) before reaching.  

 
         

             
 

Fig. 6.  The development of internal representation at VS, PFC and MS in three 

different task phases. Each point represents a single trial and the distance 

between those points represents the relative similarity between the trials. The 

shape and the color of each point denote the type of the target object and the 

type of human gesture respectively. The number next to each point denotes the 

object’s position. In (d), (g) and (h), the numbers were omitted due to the large 

overlap between them. 

VI. SUMMARY AND CONCLUSION 

In this study, we clarified how deep learning schemes can be 

utilized to integrate a set of cognitive skills of a humanoid robot 

in a seamless manner. We extended the dynamic neural 

network model called VMDNN (Visuo-Motor Deep Dynamic 

Neural Network) and evaluated it thoroughly by conducting 

synthetic robotic experiments. Throughout the experiments, we 

verified that the proposed model was capable of learning 

goal-directed actions which require seamless integration 

among visual recognition, attention switching, action 

preparation and generation. The robot was able to link the 

lower level perception of large dimensionality into the higher 

level "conceptual" actional intention for generating precise 

motor program to be executed. There are several key aspects of 

the model. First, there is no explicit split between the 

perception, action and decision making in the proposed model. 

By means of the tightly coupled structures and spatio-temporal 

constraints imposed on the model, the robot was able to learn 

goal-directed action by developing multimodal representation 

in multiple levels in a coordinated dynamic process. Second, 

the experimental results showed that the proposed model can 

develop and facilitate a sort of working memory required for 

the tasks. In both experiments, the robot was able to maintain 

higher-level task-related information throughout the task 

phases. This is due to the recurrent connections at PFC and 

slow dynamics of PFC and MS. It remains for the future studies 

to examine the model in more complex robotic tasks requiring 

other cognitive skills and modalities. 
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