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Emergence of Hierarchical Structure mirroring

Linguistic Composition in a Recurrent Neural Network

Abstract

We show that a Multiple Timescale Recurrent Neural Network (MTRNN)

can acquire the capabilities to recognize, generate, and correct sentences by

self-organizing in a way that it mirrors the hierarchical structure of sentences:

characters grouped into words, and words into sentences. In an experiment,

we trained our model over a set of unannotated sentences from an artificial

language, represented as sequences of characters. Once trained, the model

could recognize and deterministically generate grammatical sentences, even

if they were not learned. Moreover, we found that our model could correct

a few substitution errors in a sentence, and the correction performance was

improved by adding the errors to the training sentences in each training iter-

ation with a certain probability. An analysis of the neural activations in our

model revealed that the MTRNN had self-organized, reflecting the hierarchi-

cal linguistic structure by taking advantage of the differences in time scale

among its neurons: in particular, neurons that change the fastest represented

“characters,” those that change more slowly, “words,” and those that change

the slowest, “sentences.”
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Preprint submitted to Neural Networks October 28, 2010

TeX source file for manuscript
Click here to view linked References

http://ees.elsevier.com/neunet/viewRCResults.aspx?pdf=1&docID=1572&rev=1&fileID=46238&msid={9F4E0E35-9178-4DBF-BC25-80F571EF4296}


1. Introduction

Many theories have been proposed to explain how children can acquire

a language system that generates diverse complex sentences, despite limited

and often corrupted linguistic stimuli. As a result of the progress made in an-

alyzing non-linear dynamical systems and chaos [6], it has been revealed that

diverse, complex patterns can emerge from the continuous interaction be-

tween primitive components [20]. Therefore, connectionist approaches based

on the viewpoint of language as a complex dynamical system have started to

attract a great deal of attention [7, 1, 21].

Recurrent Neural Networks (RNN) [5, 12], which can be seen as non-linear

dynamical systems [13], are often used as the basis of such connectionist

models for language acquisition because of their representational power. In

fact, some recurrent architectures have been shown to be computationally

Turing equivalent [14, 11]. Another important feature of RNNs is “self-

organization”, which is a phenomena that a global coherent structure appears

in a system not by a central authority but by local interaction among elements

of the system. When we train an RNN to learn language, whole neurons

of the RNN organize a structure that emulates some aspects of language

function, through a process where each neuron changes its connection weights

according to learning rules while interacting other neurons. We need not to

design the linguistic structure because it spontaneously emerges in an RNN.

Thus, examining what structure emerges helps us gain insight into how the

human brain acquires language function.
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1.1. Existing RNN Models for Language Acquisition and their Problems

Many researches have shown that RNNs can learn to classify sentences

as either grammatical or ungrammatical [17, 14]. But these models can not

generate any sentences and require sentences annotated as grammatical or

not for a training set. Humans’ ability to generate sentences is an essential

part of language function. In addition, it is claimed that in reality there

is virtually no evidence of what is ungrammatical in the linguistic stimuli

exposed to children [2, 3]. In fact, children hardly encounter annotated sen-

tences in daily life. Thus, it is significant to consider a model which can

acquire a capability to generate sentences from only a set of unannotated

sentences.

Elman [8, 9, 7] proved that a Simple Recurrent Network (SRN) could

learn grammar using only a set of unannotated sentences by training it to

predict the next word from those that had been input up to that step. The

model provides step-by-step syntactic assessments of sentences. We can also

sample various sentences from the trained SRN, as can formal grammars,

by selecting words according to the probability output from it. The model,

however, does not seem to be the best for us to gain insights into human’s

generative capability of language because its stochastic process for generating

sentences is completely different from humans. Humans generate a sentence

depending on their intention, but the SRN does not generate a certain sen-

tence selectively and deterministically.

Sugita et al. [22] and Ogata et al. [16] modeled the process where a

sentence was generated depending on an intention by using an RNN model

with Parametric Bias (RNNPB) [23]. The model learns language in a similar
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way as the SRN, but it deterministically generates sentences by selecting a

word corresponding to the most highly-activated nodes at each step. Values

of its parameter nodes determine which sentence the model generates and the

parameter space is spontaneously organized through the training process of

the model. We can see that the parameter vector corresponds to an intention

which determines what to say. Their models enabled a robot to generate a

sentence expressing its motion by mapping a robot’s sensori-motor flow to the

parameter space [16]. They, however, dealt only with very simple sentences

composed of two or three words, because the model had difficulty learning

long, complex sequences.

A common problem of existing RNN models is that they require a prede-

termined word set to learn language, because each of their input nodes cor-

responds to a word [10, 24, 14, 16]. If there is no previous knowledge about

words, a model should acquire the representation of words themselves by

composing more primitive elements, such as characters or phonemes. Thus,

learning languages without a predetermined word set requires the capability

of hierarchical composition, such as characters to words and words to sen-

tences. Humans have this capability in reality and it plays an essential role

in providing infinite expressions to natural language with a limited number

of elements (characters or phonemes). Therefore, it is also important to re-

veal whether a neural system can self-organize reflecting such hierarchical

structures.

In most studies on the language acquisition by RNNs, there seems to be

an implicit assumption that all sentences given to the model are correct and

clean, though linguistic stimuli exposed to children are not always correct
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and clean. Thus, it is important to examine whether the RNN models can

acquire the language function even from corrupted sentences. Moreover, the

question of how corruptions in linguistic stimuli impact linguistic capabilities

is also worth investigating.

1.2. Features of our Model

We applied a Multiple Timescale Recurrent Neural Network (MTRNN)

[25] to a language acquisition task. The model was proposed by Yamashita

and Tani and they originally used it for the task of learning robots’ sensori-

motor flow [25]. We found that the model enabled us to overcome the above

mentioned problems on language acquisition in a connectionist way. We show

the following points in this paper.

1. Our model self-organizes mirroring hierarchical linguistic composition

(characters to words and words to sentences) when it is trained using a

set of unannotated sentences, each of which is represented as a sequence

of characters. Thus, our model can acquire the capabilities to recognize,

generate and correct sentences, even if they are not learned, without

any previous knowledge about lexicon nor grammar.

2. Our model can deterministically generate a certain sentence depending

on its initial state. This state space is spontaneously organized through

its training process in a way that holistic representation of sentences are

embedded within it. Thus, we can model the process where humans

generate a sentence depending on an intention. This capability can

lead to a system which generates sentences depending on a situation

by mapping the situation to the initial state space. Moreover, it can

learn more complex sentences than RNNPBs [23].

5



3. The robustness of the linguistic structure that emerges in our model

improves when we add some substitution errors to the training sen-

tences with a certain probability in each training iteration. This can

provide insight into the question of how corruptions in linguistic stimuli

impact linguistic capabilities.

2. Model

Our language learning model is based on an MTRNN [25]. An MTRNN

deals with sequences by calculating the next state S(t + 1) from the cur-

rent state S(t) and the contextual information stored in their neurons. The

model is composed of several neuron groups, each with an associated time

constant. If the neurons have a larger time constant, their states change

more slowly. The time scale difference causes information to be hierarchi-

cally coded. MTRNN can deterministically generate sequences depending

on the initial states of certain context nodes. Moreover, given a sequence,

the model can calculate the initial states from which it generates the target

sequence. Therefore, this model can be used as the recognizer and generator

of sequences. The initial state space self-organizes based on the dynamical

structure among the training sequences. Thus, the model even deals with

unknown sequences by generalizing the training sequences.

Figure 1 shows an overview of our model. Our language learning model

has three neuron groups, consisting of the input-output (IO), Fast Context

(Cf), and Slow Context (Cs) groups, in increasing order of time constant τ .

The IO has 30 nodes and each of them corresponds to one of the characters

from the 26 letters in the alphabet (‘a’ to ‘z’) and four other symbols (space,
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period, comma, and question mark). Cf and Cs have 40 and 11 nodes, re-

spectively. We choose six neurons from Cs to be used as the Controlling

Slow Context (Csc), whose initial states determine the sequence. We deter-

mined the number of nodes for each neuron group on a trial basis. We set

τ = 2, 5, 70, for IO, Cf, Cs respectively, in reference to the original paper of

the MTRNN [25] and we confirmed this worked well.

In our model, a sentence is represented as a sequence of IO activations

corresponding to characters. The model learns to predict the next IO acti-

vation from the activations up to that point. Therefore, we use only a set

of sentences to train our model. Figure 2 shows an example of the training

sequence for this model. We used this representation method in order to re-

veal, as simply as possible, whether a neural dynamical system could acquire

the capability of hierarchical composition, such as characters to words and

words to sentences. Thus, we do not claim the neural plausibility for this

representation method.

The activation value of the i-th neuron at step t (yt,i) is calculated as

follows.

yt,i =























exp(ut,i + bi)
∑

j∈IIO

exp(ut,j + bj)
· · · (i ∈ IIO) (1a)

1

1 + exp(−(ut,i + bi))
· · · (i /∈ IIO) (1b)
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ut,i =























0 · · · (t = 0 ∧ i /∈ ICsc)

Csc0,i · · · (t = 0 ∧ i ∈ ICsc)
(

1−
1

τi

)

ut−1,i +
1

τi

[

∑

j∈Iall

wijxt,j

]

· · · (otherwise)

(2)

xt,j = yt−1,j · · · (t ≥ 1) (3)

IIO, ICf , ICs, ICsc : neuron index set of each group (ICsc ⊂ ICs)

Iall : IIO ∪ ICf ∪ ICs

ut,i : internal state of i-th neuron at step t

bi : bias of i-th neuron

Csc0,i : initial state controlling MTRNN

τi : time constant of i-th neuron

wij : connection weight from j-th to i-th neuron

wij = 0 · · · (i ∈ IIO ∧ j ∈ ICs) ∨ (i ∈ ICs ∧ j ∈ IIO)

xt,j : input from j-th neuron at step t

The connection weights (wij), biases (bi), and initial states (Ccs0,i) are

updated using the Back Propagation Through Time (BPTT) algorithm [19]

as follows.

w
(n+1)

ij = w
(n)

ij −η
∂E

∂wij

= w
(n)

ij −
η

τi

∑

t

xt,j

∂E

∂ut,i

(4)

b
(n+1)

i = b
(n)
i −β

∂E

∂bi
= b

(n)
i −β

∑

t

∂E

∂ut,i

(5)

Csc
(n+1)

0,i = Csc
(n)
0,i −α

∂E

∂Csc0,i
= Csc

(n)
0,i −α

∂E

∂u0,i

· · · (i ∈ ICsc) (6)
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E =
∑

t

∑

i∈IIO

y∗t,i · log
(y∗t,i
yt,i

)

(7)

∂E

∂ut,i

=



















yt,i − y∗t,i +
(

1−
1

τi

) ∂E

∂ut+1,i

· · · (i ∈ IIO)(8a)

yt,i(1− yt,i)
∑

k∈Iall

wki

τk

∂E

∂ut+1,k

+
(

1−
1

τi

) ∂E

∂ut+1,i

· · · (otherwise)(8b)

n : iteration number in updating process

E : prediction error

y∗t,i : ideal activation value of i-th neuron at step t for target sentence

η, β, α : learning rate constant

The derivations of these formulas are given in Appendix C. The form of error

function E is called Kullback-Leibler divergence. When the output function

for IO nodes is the softmax function (Eq. (1a)), this error function is used for

the BPTT [25, 15]. When using the BPTT algorithm, the IO input values

(xt,j) are calculated along with the feedback from the training sequence using

the following equation instead of Eq. (3).

xt,j = (1− r)× yt−1,j + r × y∗t−1,j · · · (t ≥ 1 ∧ j ∈ IIO) (9)

r : feedback rate (0 ≤ r ≤ 1)

The initial Csc states determine the MTRNN’s behavior. Thus, we define

an initial Csc state vector (Csc0) as a six dimensional vector where each of

the dimensions corresponds to the initial Csc state. Csc0 is independently

prepared for each training sequence while the network weights (connection

weights and biases) are shared by all the sequences. The initial state space
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self-organizes based on the dynamical structure among the training sequences

through a process where the network weights and Csc0 are simultaneously

updated.

To recognize a sequence, the Csc0 representing the target sequence is

calculated by the BPTT from Eq. (6), while the network weights are fixed

to prevent the network from changing. The calculation of Csc0 by BPTT

sometimes falls to a local minimum. Therefore, we calculate it 20 times while

changing the initial value in the updating process (Ccs
(0)

0,i ), and choose the

result with the lowest error E (cf. Eq. (7)). It is difficult to calculate it in real

time, but it does not take so long because the number of necessary iterative

steps until convergence in a recognition phase is much less than that in the

training phase. In this recognition phase, the IO input values are calculated

using Eq. (9) if the value of the target sequence is given, otherwise they are

calculated using Eq. (3). Thus, the MTRNN can recognize sequences even

if only partial information is given.

A sequence is generated by recursively executing a forward calculation

(Eqs. (1a), (1b), (2), and (3)) using Csc0 that represents the target se-

quence.

3. Representation of Sentences

In our model, a sentence is represented as a sequential activation pattern

of IO neurons (Fig. 2). In this section, we explain in detail the process of

translation between a sentence and an IO activation pattern.

We define C as a set of characters composed of the 26 letters in the

alphabet (‘a’ to ‘z’) and four other symbols (space, period, comma, and
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a(t)

IO : 30 node,  τ = 2 

b(t) z(t)

a(t+1) b(t +1) z(t+1)

…

…

…

…

…

…

…

…

…

…

Cf : 40 node,  τ = 5

…

…

Cs : 11 node, τ = 70

…

…

Csc : 6 node

Figure 1: Overview of Language Learning MTRNN: a(t) is activation value of neuron

corresponding to ‘a’. The others (b(t), ..., z(t), ...) are defined in the same way. The

sentences are represented by the successive activation of IO neurons.
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Figure 2: Example of training sequence: “punch the small ball.”
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question mark). We also define ci ∈ C as a character corresponding to the

i-th neuron (i ∈ IIO). We represent a sentence (S) whose length is L as a

CL vector : S = {s1, s2, ..., sL}, (sk ∈ C).

3.1. Encoding Sentences into Neural Activation

An ideal activation value of the i-th neuron at step t for S, y∗t,i, is cal-

culated by applying a soft-max function to the ideal internal states of IO

neurons. An ideal internal state of the i-th neuron at step t for S, u∗

t,i, is

calculated by convoluting a gaussian g(t) to a sequence of spikes fi(t) that

are activated whenever ci appears in S. The precise formulation is as follows.

y∗t,i =
exp(u∗

t,i)
∑

j∈IIO

exp(u∗

t,j)
(10)

u∗

t,i = λ · (g ∗ fi)(t) (11)

fi(t) =







1 · · · (sk = ci ∧ t = µ+ (k − 1)ν)

0 · · · (otherwise)
(12)

g(t) =







exp
(

−
t2

2σ2

)

· · · (−
ω

2
≤ t ≤

ω

2
)

0 · · · (otherwise)
(13)

λ : scaling factor

µ : head margin

ν : interval between two characters

ω : filter width

σ : filter sharpness factor
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The constant λ is used to match the activation scale between the IO and

the other neurons whose activation functions are sigmoid (Eq. (1b)). We

determined λ by using the following equation so that the maximum value of

y∗t,i equals 0.9:

λ =
1

max
t,i

((g ∗ fi)(t))
· ln

( 0.9

1.0− 0.9
· (size(IIO)− 1)

)

. (14)

In our experiment, we set the five constants as follows : λ = 5.5645,

µ = 4, ν = 2, ω = 4, and σ2 = 0.3.

3.2. Decoding Neural Activation

We can obtain a sentence by decoding the IO activation pattern generated

by an MTRNN. The k-th character (sk) in the sentence is decided by using

the following equations.

sk = cm (15)

m = argmax
i

(y(µ+(k−1)ν),i)

We can gain a whole sentence S by using these equations L times. Even

if the sentence length L is not given, we can find the end of the sentence by

checking whether sk is a period or not.

4. Experiments

Our experiment aimed to reveal whether the MTRNN could acquire ca-

pabilities to recognize and generate sentences, even if they were not learned,
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through self-organization of linguistic structure. Thus, we trained the MTRNN

to learn language without any previous knowledge of words or grammar, and

tested its capabilities to recognize and generate sentences.

The performance of the model was examined for three types of sentences:

correct sentences, ungrammatical sentences, and sentences with a few mis-

spellings. First, using both the correct and ungrammatical sentences, we

examined whether our model could adequately acquire linguistic structure,

such as the necessary grammar. In particular, we tested its capabilities to

recognize and generate grammatical and ungrammatical sentences using a

“sentence emulation task” where our model tries to recognize a sentence

and generate the same sentence from the result of the recognition. Second,

we examined the robustness of the linguistic structure that emerged in our

model using a “sentence correction task” where our model tried to correct

misspellings in the sentences.

We also aimed to investigate how corruption of the linguistic stimuli im-

pacted the linguistic capabilities acquired from them. For this purpose, we

added a few substitution errors to the training sentences with a fixed prob-

ability ρ in each training iteration. We trained our model 20 times for each

ρ = 0, 5, 10, 20, 30, 40(%), and each time changed the initial value of the

network weights.

4.1. Target Language

In this experiment, we used a very small language set in order to make

it possible to analyze the linguistic structure that emerged in the MTRNN.

Our language set contained 17 words in 7 categories (Table 1) and a regular

grammar consisting of 9 rules (Table 2). The number of different sentences
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that can be generated from the language set is 441. (This language set was

designed for robot tasks.)

Table 1: Lexicon

Category Nonterminal symbol Words

Verb (intransitive) V I jump, run, walk

Verb (transitive) V T kick, punch, touch

Noun N ball, box

Article ART a, the

Adverb ADV quickly, slowly

Adjective (size) ADJ S big, small

Adjective (color) ADJ C blue, red, yellow

Table 2: Regular grammar

S → V I NP → ART N ADJ → ADJ S

S → V I ADV NP → ART ADJ N ADJ → ADJ C

S → V T NP ADJ → ADJ S ADJ C

S → V T NP ADV

4.2. Experimental Procedure

1. Derive 100 different sentences from the regular grammar. We list all

the sentences in Table A.5.

2. Train the MTRNN using the first 80 sentences (No.001 - 080). In each

training iteration, we added substitution errors to each sentence with

a fixed probability (ρ) as follows.
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(i) Go to step (ii) with probability ρ, otherwise exit.

(ii) Replace a randomly chosen alphabet in a target sentence with

another randomly chosen alphabet.

(iii) Return to step (i).

3. Sentence emulation task:

Test the trained MTRNN’s capability using all of the 100 sentences, and

another 20 sentences that are ungrammatical as a control experiment.

The testing procedure was as follows.

(i) Recognition: Calculate Csc0 from a sentence.

(ii) Generation : Generate a sentence from the Csc0 gained in (i).

(iii) Comparison: Compare the original and generated sentence.

4. Sentence correction task:

Test the MTRNN’s capability to correct the corrupted sentences, each

of which includes one or two substitution errors. We used all of the 100

sentences (Table A.5) for this task.

(i) Corruption : Replace one or two randomly chosen alphabet(s) in

a target sentence with randomly chosen one(s).

(ii) Recognition: Calculate Csc0 from the corrupted sentence.

(iii) Generation : Generate a sentence from the Csc0 gained in (ii).

(iv) Comparison: Compare the original and generated sentence.

5. Results

In our experiments, we trained 120 MTRNNs (for each 6 values of ρ,

20 individual simulations were done), and tested their performance for two

tasks, a sentence emulation task and a sentence correction task. As a result,
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we were able to find the best training result from the 120 done, which had

the best score for both of these tasks. We present the best performance for

sentence emulation in Sec. 5.1, and for error correction in Sec. 5.2.

The value of ρ for the best result was 30%. A detailed analysis for the

correlation between ρ and the model’s performance is given later in Sec. 6.2.

5.1. Performance of Sentence Emulation

We found that our model could correctly emulate 98 of 100 grammatical

sentences. We list the sentences that the model failed to emulate in Table

3. For the correct emulation of a sentence, our model needs to acquire a

dynamical structure representing the sentence. In other words, a stable tra-

jectory representing the sentence should be formed in the dynamical system

of the MTRNN, and its Csc0 should be properly embedded into the initial

state space. We define a stable trajectory as a trajectory that has enough

attractive power to recover from a given level of perturbation. If a trajec-

tory representing the target sentence is not stable enough, our model can

not re-generate the same trajectory from an initial state because its output

easily deviates from the target trajectory through calculation errors in for-

ward calculations of the RNN. The fact that the model could emulate 18 of

20 unknown sentences reveals that it had acquired the dynamical structure

representing them by generalizing the training sentences.

We also found that none of the 20 ungrammatical sentences for the control

experiment were emulated correctly because the recognition error (E (cf.

(7)) in the recognition phase) did not adequately fall. Indeed, the average

recognition error of the 20 ungrammatical sentences was about 22 times as

large as that of the 20 unknown grammatical sentences. This implies that
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our model can distinguish ungrammatical sentences by using the recognition

error.

These results revealed that our model self-organized mirroring linguistic

structure adequately only from the sentence set. A detailed analysis of the

linguistic structure that emerged in our model is given later in Sec. 6.1.

Table 3: Errors in sentence emulation: input sentences whose number is less than 81 were

included in the training set, otherwise not. The emphasized characters in a sentence are

different from the original.

Number Input sentence Generated sentence

082 “kick a big yellow box.” “kick a sillylllow box.”

100 “jump quickly.” “jump slowloxl”

5.2. Performance of Sentence Correction

We found that our model could correct 83 of 100 sentences, each with one

or two substitution errors. The 83 sentences are comprised of 66 of the 80

input sentences whose original versions were included in the training set and

17 of the 20 inputs whose originals were not learned. We list the sentences

that the model failed to correct in Table B.6.

A trajectory representing a corrupted sentence can be regarded as per-

turbed one from the original representing the correct sentence. The pertur-

bation caused by the sentence corruption can be recovered when our model

generates a trajectory from Csc0, if the trajectory representing the correct

sentence is robust enough and its attractive area is also sufficiently wide.

This is the mechanism that the model uses to correct sentences. Thus, the

18



success of a sentence correction indicates that there is a robust trajectory

representing the sentence.

In conclusion, the result of this experiment reveals that our model can ac-

quire the capability to correct a few errors in a sentence with a high accuracy

by self-organization of a robust linguistic structure.

5.3. Cross Validation

So far, we have shown the experimental results in the case where the

training set consisted of sentences whose numbers were from 001 to 080.

We also examined the generalization capabilities of our model in the same

conditions as before, except for the training set. We listed the accuracy for

both the emulation and correction task in each case in Table 4.

We found that our model demonstrated almost the same performance

in every case. We also found that our model failed to correctly generate all

sentences which included the word “run” in the case listed at the top of Table

4. This was because the word “run” never appeared in the training set in

that case.

Table 4: Results of Cross Validation:

Sentences for Validation Emulation Task Correction Task

001 - 020 95/100 84/100

021 - 040 100/100 82/100

041 - 060 96/100 78/100

061 - 080 96/100 81/100

081 - 100 (above-mentioned) 98/100 83/100
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6. Discussion

In this section, we deal with three topics. First, we analyze the hierarchy

of the linguistic structure in Sec. 6.1. Second, we reveal the correlation

between corruption in the training sentences and robustness of the linguistic

structure acquired by our model in Sec. 6.2. Finally, we discuss language

acquisition in more difficult condition in Sec. 6.3.

6.1. Linguistic Hierarchy in MTRNN

We claim that our model is self-organized, reflecting the hierarchical lin-

guistic structure, and more precisely that IO neuron activation represents

“characters,” Cf represents “words,” and Cs represents “sentences.” In this

section, we illustrate the basis of this argument by analyzing our model.

We analyzed the neural activation patterns when the MTRNN generated

sentences to reveal the linguistic structures that emerged in the MTRNN.

We used the principle component analysis (PCA) technique in our analysis.

We summarize the analysis results for each neuron group below.

IO : Each IO neuron corresponds to a character. Thus, their activation

patterns obviously represent the “characters” sequences.

Cf : We claim that Cf activations represent “words,” including their gram-

matical information. Our claim is based on the following facts, which

we found by analyzing Cf activation patterns.

1. The same words are represented by almost the same trajectories

in the state space of Cf activation.

This can be confirmed with Fig. 3. Figure 3 shows transitions of
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Cf activation for all of the words appearing in the data set (cf.

Table A.5).

2. The words in the same category are represented in a similar way.

Figure 3 shows that trajectories of words in the same category are

located in the same region of the state space. We also show the

Cf activations in the first step of each word in Fig. 4. This clearly

illustrates that words are clustered by their grammatical roles.

3. The first and the last steps of the words are clustered by their

grammatical roles, and the grammatical connection of the words

is represented by the closeness of the clusters.

We can regard this as the structure of the underlying grammar.

For a better understanding of the structure, we present some ex-

ample of the Cf activation transition which represents a whole

sentence in Fig. 5.

4. The correspondence between characters and activations disap-

peared. This is easily confirmed since the activation patterns are

different even if the characters are the same.

Cs : We claim that the Cs activation represents “sentences.” The bases for

our claim are as follows.

1. The initial states of Cs (Csc0) are clustered mainly by the gram-

matical structure of the sentences (Fig. 6). The grammatical

structure is featured by both the existence of an adverb and the

complexity of the objectival phrase. The complexity of the objec-

tival phrase is increasing in the following order.

(i) sentence with a intransitive verb (e.g. “walk.”)
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(ii) sentence with a transitive verb and no adjectives

(e.g. “kick a box.”)

(iii) sentence with a transitive verb and 1 adjective

(e.g. “kick a red box.”)

(iv) sentence with a transitive verb and 2 adjectives

(e.g. “kick a big red box.”)

2. The correspondence between words and activations disappeared.

Even the same words in different sentences are represented in dif-

ferent ways. This can be confirmed with Fig. 7 (e.g. “yellow” in

the center and to the right of the figure).

verb

PC2

PC
1

: kick
: touch
: punch

: run
: jump
: walk

-1.6

-2.0

-2.4

-2.8

-3.2

-3.6
-3.0 -2.0 -1.0 0.0

article

PC2

PC
1

: a
: the-2.5

-2.6

-2.7

-2.8

-2.9

-0.6 -0.2 0.2 0.6

adjective : size

PC2

PC
1

: big
: small

-1.8

-2.0

-2.2

-2.4

-2.60.6 0.7 0.8 0.9 1.0

adjective : color

PC2

PC
1

: yellow
: red
: blue

-2.0

-2.2

-2.4

-2.6

0.8 1.0 1.2 1.4

noun

PC2

PC
1

: ball
: box

-1.8

-2.0

-2.2

-2.4

1.3 1.4 1.5 1.6

adverb

PC2

PC
1

: quickly
: slowly

-1.4

-1.6

-1.8

-2.0

0.8 1.0 1.2 1.4 1.6

Figure 3: Cf activation transitions of each word: dimensions are reduced from 40 to 2

using PCA (total contribution rate of the 2 components is 77%). The same words have

nearly identical trajectories, and words in the same categories have similar trajectories.
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Figure 5: Cf activation transitions of sentence: dimensions are reduced from 40 to 3 using

PCA (total contribution rate of the 3 components is 86%). The trajectory of each word

ends near the initial states of words which belong to possible next word categories. The

three activation patterns in this figure corresponds to the sentences, “walk slowly.,” “punch

the yellow box slowly.,” and “kick a small yellow ball..”
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words in the sentence, namely the complexity of the sentence. (b) There seems to be a

PC2 threshold that separates whether a sentence has an adverb or not. (c) Focusing on

the number of words in an objectival phrase, there seems to be an axis that correlates
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24



-2-1.5-1-0.5

-1

-0.5

0

0.5

-0.5

0

0.5

1

PC2

PC1

Walk slowly.
P
C
3

walk slowly

P
C
3

-2-1.5-1-0.5

-0.5

0

0.5

1

PC2

PC1

punch
the

yellow slowly
box

-1

-0.5

0

0.5

Punch the yellow box slowly.

-2-1.5-1-0.5

-0.5

0

0.5

1

PC2

PC1

Kick a small yellow ball.

P
C
3 kick

a

small

yellow ball

-1

-0.5

0

0.5

: initial activation : lexical segment : transition segment (head margin,  space or period)

Figure 7: Cs activation transitions: dimensions are reduced from 11 to 3 by PCA (total

contribution rate of the 3 components is 95%). In different sentences, even the same words

are represented in different ways. The three activation patterns in this figure corresponds

to the sentences, “walk slowly.,” “punch the yellow box slowly.,” and “kick a small yellow

ball..”

6.2. Correlation between Corruption in Training Sentences and Robustness

of Linguistic Structure

We analyzed the correlation between the error incidence probability ρ

and the accuracy of the sentence emulation and correction task in order to

investigate how corruption in the training sentences impacts the linguistic

structure acquired by our model. For each ρ = 0, 5, 10, 20, 30, 40(%), we

calculated the accuracy of the emulation and the correction task by averaging

the top three accuracies of the 20 trials. Figure 8 shows the results.

From the results, we observe the following:

1. Adding errors to the training sentences considerably improves the ca-

pability to correct sentences.

2. Adding errors to the training sentences also improves the capability to

emulate, or recognize and generate, sentences with no errors.
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3. Adding too many errors to the training sentences reduces the capability

to emulate and correct sentences.

In conclusion, we claim that the robustness of the linguistic structures

that emerge in our model is improved by adding some substitution errors to

the training sentences with a certain probability. We presume this is because

attractive areas of a trajectory representing a sentence are broadened by

training the model with perturbed trajectories.
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Figure 8: Accuracy against ρ (error incidence probability)

6.3. Language Acquisition in More Difficult Condition

We discuss language acquisition in more difficult condition. First, we

show the result of an experiment where we trained our model without delim-

iters in Sec. 6.3.1. Second, we discuss possibilities to expand our model to

learn a language with a more complex grammar in Sec. 6.3.2.
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6.3.1. Acquisition of a Language without Delimiters

We found that a structure reflecting the lexicon emerged in the Cf. How

did our model extract words from sentences represented as sequences of char-

acters? Did it take advantage of white-space characters as delimiters? To

answer this question, we trained and tested the MTRNN using a sentence

set without white-space characters. Experimental conditions are the same

as those described in Sec. 4, except all white-space characters are omitted

from the sentences. As a result, we confirmed that the MTRNN performed

well with an emulation accuracy of 96/100, a correction accuracy of 81/100

(those scores compares favorably with the best result presented in Sec. 5).

Therefore, the linguistic structure can emerge regardless of whether or not

there are word delimiters in sentences. We presume that the structure of

words is learned through MTRNNs’ tendency to reuse trajectories that rep-

resent a common substring in sentences in order to memorize them in the

simplest way.

6.3.2. Acquisition of Language with More Complex Grammar

We used a simple language with a regular grammar for our experiment.

That does not, however, imply an intrinsic limitation of RNNs’ capability to

acquire a grammar. Some recurrent architectures have been shown to be com-

putationally Turing equivalent [14, 11]. Indeed, it has been confirmed that

some RNN models can learn context-free language, and also learn context-

sensitive and recursive language when their complexity is limited [7, 18, 4].

Thus, we presume it is possible to expand our model to learn a language with

more complex grammars.
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7. Conclusion

In this paper, we reported on language acquisition by the MTRNN. We

trained the model to learn a language using only a sentence set without any

previous knowledge of the words or grammar, but only of the character set.

As a result of our experiments, we found that the model could acquire the

capabilities to recognize and generate grammatical sentences even if they

were not learned. Moreover, our model could correct one or two substitution

errors in a sentence with high accuracy. Therefore, we showed that our model

can self-organize reflecting linguistic structures by generalizing a sentence set.

To reveal the linguistic structure, we analyzed the neural activation pat-

terns in each neuron group. As a result of the analysis, we found that our

model self-organized, reflecting language hierarchy, taking advantage of the

difference in time scales among neuron groups. More precisely, the IO neu-

rons represented “characters,” the Cf neurons represented “words,” and the

Cs neurons represented “sentences.” The model recognizes and generates

sentences through the interaction among these three levels.

We proved through our experimentation that a neural system such as an

MTRNN can self-organize mirroring the hierarchical structure of language

(e.g. characters → words → sentences) by generalizing a sentence set, and it

can recognize and generate new sentences using the acquired structure. This

result implies that the requirements for language acquisition are not innate

faculties of language, but appropriate architectures of a neural system. We

insist that multiplicity of time scale among neurons is a potential candidate

for the requirements.

We also revealed that the robustness of the linguistic structure that
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emerged in our model was improved when we added some errors to the train-

ing sentences with a certain probability. It is usually believed that the poor

quality of linguistic stimuli makes it difficult for children to acquire a lan-

guage. However, our result implies there is a possibility that certain levels

of corruption in the linguistic stimuli can improve the robustness of the lin-

guistic cognitive capabilities acquired from them.

For our future work, we intend to deal with language acquisition from the

viewpoint of the interaction between linguistic cognition and other types of

cognition (this is the viewpoint of cognitive linguists). In concrete terms, we

are going to connect the language MTRNN with another MTRNN dealing

with the sensori-motor system of a robot. We expect the robot to acquire a

language grounded on its sensori-motor cognition using the dynamical inter-

action between the two MTRNNs.
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Table A.5: The list of sentences
Number sentence Number sentence

001 “jump slowly.” 051 “punch the red box.”

002 “punch the small ball.” 052 “punch the big red box.”

003 “run quickly.” 053 “punch the small yellow ball.”

004 “punch the ball quickly.” 054 “touch a small ball.”

005 “punch the small yellow box slowly.” 055 “punch a blue box quickly.”

006 “kick the big box.” 056 “punch the yellow box slowly.”

007 “touch a ball slowly.” 057 “punch the box slowly.”

008 “run slowly.” 058 “punch the box quickly.”

009 “touch the big box.” 059 “touch a big ball.”

010 “kick the box.” 060 “touch a small red ball.”

011 “punch a small box.” 061 “kick a small yellow ball.”

012 “punch the yellow box.” 062 “touch the blue box.”

013 “kick a box.” 063 “punch the small ball slowly.”

014 “touch a blue ball.” 064 “touch a yellow box slowly.”

015 “run.” 065 “touch a ball quickly.”

016 “punch a box.” 066 “kick the big ball quickly.”

017 “kick a ball.” 067 “punch the small yellow box.”

018 “punch the small blue box quickly.” 068 “touch the big blue ball.”

019 “touch the blue ball slowly.” 069 “touch the box slowly.”

020 “punch the box.” 070 “kick the ball.”

021 “punch a yellow box.” 071 “kick the small yellow box.”

022 “touch a ball.” 072 “kick the blue ball.”

023 “kick the big ball.” 073 “punch a yellow ball.”

024 “touch the small ball slowly.” 074 “kick the small blue box.”

025 “punch the yellow ball.” 075 “punch the big box.”

026 “punch the big ball quickly.” 076 “punch the small blue ball.”

027 “walk slowly.” 077 “touch the big ball slowly.”

028 “punch the blue box slowly.” 078 “touch the small ball.”

029 “kick the big blue box.” 079 “walk quickly.”

030 “punch the small ball quickly.” 080 “kick the ball slowly.”

031 “touch a yellow ball.” 081 “touch the blue ball.”

032 “punch the ball slowly.” 082 “kick a big yellow box.”

033 “touch the box.” 083 “punch the big blue box.”

034 “touch a small yellow ball.” 084 “punch the big ball.”

035 “punch the small box quickly.” 085 “punch a big box.”

036 “kick the red box.” 086 “touch a blue box.”

037 “touch a box.” 087 “touch the small blue box.”

038 “punch the big yellow ball.” 088 “punch the small box.”

039 “punch a ball.” 089 “touch the small box.”

040 “punch a big ball slowly.” 090 “touch the big blue box.”

041 “jump.” 091 “kick the big red box.”

042 “touch a small box.” 092 “punch the small red ball.”

043 “walk.” 093 “kick the big red ball.”

044 “kick a big red box.” 094 “punch a box quickly.”

045 “kick a red ball.” 095 “kick the small ball slowly.”

046 “touch a big box.” 096 “punch a ball slowly.”

047 “touch a small ball quickly.” 097 “kick the small red box.”

048 “touch a red box.” 098 “touch a red ball.”

049 “punch the big red ball.” 099 “punch the small box slowly.”

050 “touch the yellow ball.” 100 “jump quickly.”
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Table B.6: Errors in Sentence Correction: the original version of corrupted sentence whose

number is less than 81 was included in training set, otherwise not. The emphasized

characters in a sentence are different from the original.

Number Corrupted sentence Generated sentence

001 “jump srowly.” “jump slowlyx”

002 “punch tee small ball.” “punch the smal buall.”

003 “oun quickly.” “run slowl sl”

008 “run slqwly.” “run slowlyx”

015 “ruj.” “jump”

016 “tunch a box.” “tunch a box.”

021 “punch a yelkow box.” “punch a yellow bx .”

023 “kick tue big ball.” “kick the big bal..”

026 “punch the big bell quickly.” “punch the big ball quilly..”

038 “punch the big yelpow ball.” “punch the big yeloww bal..”

040 “punch a bog ball slowly.” “punch a bigl all sllwlly”

042 “pouch a small box.” “pouch a small box.”

045 “kick a red boll.” “kick a red boxl.”

060 “touch a small qed ball.” “touch a small bed ball.”

082 “kick a bog yellow box.” “kick a y ll yllow box.”

094 “punch a xox quickly.” “punch a box qul.lly.”

098 “touch d bed ball.” “touch a bed ball.”

31



Appendix A. The list of sentence

Appendix B. Errors in Sentence Correction

Appendix C. Derivation of the BPTT

Appendix C.1. Supplemental Explanation for Equation (4)

∂E

∂wij

=
∑

t

∂E

∂ut,i

·
∂ut,i

∂wij

=
∑

t

∂E

∂ut,i

·
1

τi
· xt,j =

1

τi

∑

t

xt,j

∂E

∂ut,i

(C.1)

Appendix C.2. Supplemental Explanation for Equation (5)

∂E

∂bi
=

∑

t

∂E

∂(ut,i + bi)
·
∂(ut,i + bi)

∂bi
=

∑

t

∂E

∂(ut,i + bi)
· 1

=
∑

t

∂E

∂(ut,i + bi)
·
∂(ut,i + bi)

∂ut,i

=
∑

t

∂E

∂ut,i

(C.2)

Appendix C.3. Derivation of Equation (8a)

Here, we use the “Kronecker delta” (δik) defined as follows. δik =











1 · · · (i = k)

0 · · · (i 6= k)

32



∂E

∂ut,i

=
∑

k∈IIO

∂E

∂yt,k
·
∂yt,k
∂ut,i

+
∂E

∂ut+1,i

·
∂ut+1,i

∂ut,i

=
∑

k∈IIO

∂E

∂yt,k
·
∂yt,k
∂ut,i

+
∂E

∂ut+1,i

·
(

1−
1

τi

)

=
∑

k∈IIO

∂E

∂yt,k
·
δik exp(ut,k + bk)

∑

m∈IIO
exp(ut,m + bm)− exp(ut,k + bk) exp(ut,i + bi)

(
∑

m∈IIO
exp(ut,m + bm))2

+
∂E

∂ut+1,i

·
(

1−
1

τi

)

=
∑

k∈IIO

∂E

∂yt,k
·
( δik exp(ut,k + bk)
∑

m∈IIO
exp(ut,m + bm)

− yt,k · yt,i

)

+
∂E

∂ut+1,i

·
(

1−
1

τi

)

=
∂E

∂yt,i
· yt,i −

∑

k∈IIO

∂E

∂yt,k
· yt,k · yt,i +

∂E

∂ut+1,i

·
(

1−
1

τi

)

· · · (i ∈ IIO)

(C.3)

We define E(t) as follows.
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Substituting Eq. (C.4) into Eq. (C.3), we obtain the following.
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Appendix C.4. Derivation of Equation (8b)
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