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 
Abstract—This study aims to investigate how adequate cognitive 

functions for recognizing, predicting and generating a variety of 
actions can be developed through iterative learning of action-
caused dynamic perceptual patterns. Particularly, we examined 
the capabilities of mental simulation of one’s own actions as well 
as the inference of others’ intention because they play a crucial 
role, especially in social cognition. We propose a dynamic neural 
network model based on predictive coding which can generate and 
recognize dynamic visuo-proprioceptive patterns. The proposed 
model was examined by conducting a set of robotic simulation 
experiments in which a robot was trained to imitate visually 
perceived gesture patterns of human subjects in a simulation 
environment. The experimental results showed that the proposed 
model was able to develop a predictive model of imitative 
interaction through iterative learning of large-scale spatio-
temporal patterns in visuo-proprioceptive input streams. Also, the 
experiment verified that the model was able to generate mental 
imagery of dynamic visuo-proprioceptive patterns without feeding 
the external inputs. Furthermore, the model was able to recognize 
the intention of others by minimizing prediction error in the 
observations of the others’ action patterns in an online manner. 
These findings suggest that the error minimization principle in 
predictive coding could provide a primal account for the mirror 
neuron functions for generating actions as well as recognizing 
those generated by others in a social cognitive context. 
 

Index Terms— Cognitive robotics, dynamic neural network, 
predictive coding, social cognition, cognitive system architectures 
and implementations.  
 

I. INTRODUCTION 

ECENTLY, studies on how various cognitive functions 
can be developed through the experience of acting and 

perceiving in the environment have been attracting more 
researchers in the fields of cognitive neuroscience and cognitive 
robotics [1-4]. In neuroscience, the brain functions for 
perception, action and their association have been widely 
studied. A representative study illustrating possible links 
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between perception, action, and cognition might be the one on 
the mirror neurons system (MNS) [5]. Mirror neurons were first 
discovered in area F5 of the monkey’s premotor cortex [6, 7] 
and it was reported that mirror neurons were activated while 
executing own actions as well as observing the same ones 
performed by others [8-11]. The MNS has been reported to be 
involved in several cognitive processes, including action 
understanding and intention recognition [5]. Other previous 
studies have also illustrated the roles of the perception-action 
link in many cortical functions, including working memory, 
attention, and in social interaction [2, 9, 12, 13]. In [2], the 
authors argued that “the brain basis of cognition can be 
understood in terms of interlinked action perception 
representations”. 

In this study, we investigate how the cognitive functions of 
agents for generating and recognizing actions can be developed 
from learning causal models between one’s own intentions and 
the resultant sensory outcomes perceived in dynamic visuo-
proprioceptive patterns in the course of iterative interactions 
between the agents and the environment. Particularly, we focus 
on how cognitive competency for mental simulation and 
intention recognition can be developed as they play an 
important role, particularly in social cognition [2, 13-23]. Let 
us consider mutual imitation between two agents as an example 
for such social cognitive tasks. Imitation is closely interlinked 
with cognitive development [24] and it is important in acquiring 
sensorimotor skills as well as in social learning [25, 26]. 
Imitation is not only simply copying other’s action but it 
requires a set of cognitive skills. That is, an agent is required to 
recognize the other’s intention by observing their behavior and 
also to anticipate the consequences of own actions to the others 
[17, 23, 26, 27]. Therefore, it would be desirable if the agent 
can extract meaningful features from sensory observation and 
predict other’s action as well as its own action [24]. 

and Okinawa Institute of Science and Technology (OIST), Okinawa, Japan (e-
mail: jungsik.hwang@gmail.com). Jinhyung Kim is with KAIST, Ahmadreza 
Ahmadi is with KAIST and OIST, Minkyu Choi is with OIST. Jun Tani is a 
corresponding author and he is with OIST (e-mail: tani1216jp@gmail.com). 

Dealing with Large-Scale Spatio-Temporal 
Patterns in Imitative Interaction between a 

Robot and a Human by Using the Predictive 
Coding Framework  

Jungsik Hwang, Jinhyung Kim, Ahmadreza Ahmadi, Minkyu Choi and Jun Tani  

R



SMCA-17-05-0593.R1 
 

2

We propose a dynamic neural network model called P-
VMDNN (Predictive Visuo-Motor Deep Dynamic Neural 
Network). The proposed model is capable of learning large-
scale visuo-proprioceptive patterns in a holistic manner by 
means of the hierarchically coupled multi-modal structure. In 
our previous studies [28-30], we have shown that the deep 
dynamic neural network model was able to extract latent 
features in dynamic visuo-proprioceptive patterns and to 
associate visual perception with proprioception by introducing 
multiple-scales spatio-temporal structure. In our recent work 
[31], the model has been extended under the predictive coding 
framework [32-35] to endow the model with the capability of 
acquiring a predictive internal model of others which is 
essential in social interaction [1, 23, 33, 35]. Consequently, the 
model was able to not only perceive the dynamic visuo-
proprioceptive patterns but also predict them. In this study, we 
extend the previous model further based on the perception-
action circuits found in the mammalian brain [12], so that vision 
and proprioception could be more tightly integrated (See 
Section II.A for detail).  

We conducted a set of synthetic robotic experiments to 
examine the proposed model. In our experiment, a robot was 
trained to imitate gesture patterns of the human subjects in the 
simulation environment. We first examined how the proposed 
model could proactively reconstruct the learned visuo-
proprioceptive primitives without the external inputs but with a 
given intention through the top-down process. Then, we 
examined the role of minimizing prediction error in recognizing 
the intention in the observed visuo-proprioceptive patterns.  

There have been a few studies showing the implication of 
perception-action models on building embodied cognitive 
systems [19, 36-41]. Previous studies, however, often 
postulated separate learning processes for generation and 
recognition of actions [41] or a single pathway for multimodal 
patterns [39]. In addition, the computational model of the 
predictive coding framework which can handle large-scale 
pixel level visual stream patterns has not yet been fully 
addressed. The model proposed in the current study, however, 
can mirror generation and recognition processes for dealing 
with complex spatio-temporal patterns in visuo-proprioceptive 
input streams by using the predictive model developed from 
consolidative learning of the patterns.   

II. DYNAMIC NEURAL NETWORK MODEL 

A. Model Overview 

In this study, we extend an artificial neural network model 
called Predictive Visuo-Motor Deep Dynamic Neural Network 
(P-VMDNN) introduced in [31]. P-VMDNN is a dynamic 
neural network model which can build a predictive internal 
model of the environment through learning of large-scale 
spatio-temporal patterns of different modalities (vision and 
proprioception). For example, sequential patterns obtained 
from different sources (e.g., cameras and encoders embedded in 
a robot) can be learned in a holistic manner without any separate 
processing. P-VMDNN is an extension of our previous model 
[28-30] which consisted of the visual and proprioceptive 

pathways. In our previous studies [28-30], we showed how 
visual perception and proprioceptive information could be 
abstracted and associated in a spatio-temporally hierarchical 
structure. In our recent work [31], we extended the previous 
model under the predictive coding framework [32-35] to endow 
the model with the capability of predicting visuo-proprioceptive 
patterns. In this study, the model was improved to tightly 
integrate the visual and the proprioceptive pathways based on 
the findings in perception-action circuits in the mammalian 
brain [12]. 

The proposed model (Fig. 1) consists of the visual and 
proprioceptive pathways for perceiving and predicting the 
dynamic visual images and the proprioceptive signals (the 
perceptual outcome of the robot’s actions), respectively. Each 
pathway is composed of a set of layers and the layers at the 
same level are connected reciprocally, allowing the 
bidirectional flow of the visuo-proprioceptive signals. Note that 
the lateral connection existed only at the higher-level layers in 
the previous model [31] whereas the proposed model is 
equipped with the lateral connections at every level of the 
hierarchy. By means of those lateral connections, vision and 
proprioception can be associated within the model by learning 
the visuo-proprioceptive patterns simultaneously in the tightly 
coupled structure. 

There are several key features in the proposed model. First, 
the proposed model can learn high-dimensional visuo-
proprioceptive patterns in a holistic manner. In our previous 
studies [28-30], it was shown that end-to-end learning on the 
hierarchical model enabled the development of the functional 
hierarchy, such that the higher-level and lower-level layers 

Fig. 1.  The proposed model consists of the visual pathway (left) and the 
proprioceptive pathway (right). The visual pathway consists of Vision Input 
(VI), Vision Output (VO), Vision Fast (VF), Vision Middle (VM) and Vision 
Slow (VS) layers. The proprioceptive pathway consists of Proprioception Input 
(PI), Proprioception Output (PO), Proprioception Fast (PF), Proprioception 
Middle (PM) and Proprioception Slow (PS). The proposed model is an 
extension of our previous model [31] which has the lateral connection 
(horizontal arrows) at the higher-level layers only. The proposed model has 
been extended to have additional lateral connections at the middle-level and 
the lower-level layers based on the findings in perception-action circuits in
[12]. 
  



SMCA-17-05-0593.R1 
 

3

encoded the abstract and specific information of the patterns 
respectively. Second, the proposed model is able to generate 
visuo-proprioceptive prediction proactively with a given 
intention through the top-down process. Similarly to our 
previous model [31], the proposed model is also capable of 
mentally simulating the possible incoming dynamic visuo-
proprioceptive patterns without the external input from the 
environment [42-47]. The mental simulation capability is 
considered one of the important cognitive skills [2, 13, 43, 45-
48] and it is essential to successfully interact with a dynamic 
environment [17, 48, 49]. Third, the proposed model provides 
a mechanism for updating the internal states through 
minimizing the prediction error, which results in recognition of 
the underlying intention latent in the perceived dynamic visuo-
proprioceptive patterns. Recognizing others’ intentions by 
observing their action is an essential skill required for social 
cognition [15, 16, 20, 21]. Minimizing prediction error is at the 
essence of predictive coding [32-34] and Kilner, Friston and 
Frith [34] argued that the underlying cause of the observed 
action could be inferred by minimizing the prediction error. 
Similarly, the proposed model provides an online prediction 
error minimization mechanism by which the intention behind 
the observed visuo-proprioceptive patterns can be inferred by 
updating the neurons’ internal states in the direction of 
minimizing the prediction error. According to [34], the 
important aspect of predictive coding is that the same structure 
is employed in action generation as well as in action 
recognition. The proposed model utilizes the same neural 
architecture to generate the visuo-proprioceptive patterns and 
also to infer the cause of the perceived patterns. Finally, the 
lateral connections at all levels of the hierarchy were introduced 
in the proposed model to enable a tight coupling of vision and 
proprioception which is an essential component in cognitive 
development [3, 41, 50]. By means of the lateral connections in 
the proposed model, the visuo-proprioceptive information can 
flow bi-directionally at all levels of the hierarchy. As mentioned 
in [51], such a tight sensory-motor mapping can be simplified 
to a sensor-actuator function which can implement direct 
perception in the study on affordance [27, 52-54]. That is, 
situated behavior can be generated without complicated 
calculation, but by maintaining perceptual coordination [4]. 

B. Visual Pathway 

Through the visual pathway, the model perceives and 
predicts the dynamic pixel-level visual images. To construct the 
visual pathway, we employed the predictive coding-based 
recurrent neural network model called P-MSTRNN (Predictive 
Multiple Spatio-Temporal Scales Recurrent Neural Network) 
which could perceive and predict the dynamic pixel-level 
images [55]. Instead of employing the separate feature maps 
and the context maps as in [55], the visual pathway in the 
proposed model consists of a single type of feature maps 
equipped with the recurrent connections.  

In the proposed model, the visual pathway is composed of 
five layers: Vision Input and Output (VI, VO), Vision Fast (VF), 
Vision Middle (VM) and Vision Slow (VS). Each layer consists 
of a group of 2-dimensional feature maps retaining spatial and 

temporal information and those layers are imposed with 
different spatio-temporal constraints. A previous study [55] has 
emphasized the importance of the progressively slower 
dynamics (from the lower to the higher-level) in achieving the 
functional hierarchy. Similarly, the smaller time constants are 
assigned on the lower-level layers and the bigger time constants 
are assigned on the higher-level layers. The layers in the visual 
pathway are connected bi-directionally from the I/O layers (VI, 
VO) to the highest-level layer (VS). Also, the feature maps in 
each layer are equipped with the recurrent connections between 
the feature maps within the same layer.  

At each time step t, the internal states 𝑢௜
௧௫௬ and the activations 

v௜
௧௫௬ of the neural units in each layer are computed as follows: 
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= 1.7159 × tanh ൬
2
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𝑢௜

௧௫௬
൰        (2)

i denotes the index of the feature map, x and y denote the 
horizontal and vertical location of the neural unit on the feature 
map, τ denotes the time constant, kij is the kernel connecting jth 
feature map in Vj with the ith feature map in the current layer, 
* is the convolution operator, b is the bias and V is an input 
visual image. Note that the transposed convolution operation is 
performed in cases where the size of the input feature map is 
smaller than the size of the output feature map, such as for the 
top-down connections from the higher-level layers and the 
lateral connections from the proprioceptive pathway. In our 
previous study [31], the lateral connection existed at VS layer 
only. The proposed model is equipped with the additional 
lateral connections at VM and VF layers. To enhance the speed 
of convergence, the hyperbolic tangent recommended in [56] is 
used for the activation function (2). 

C. Proprioceptive Pathway 

The model perceives and predicts the perceptual outcomes of 
the robot’s action (i.e. proprioception) through the 
proprioceptive pathway. Note that the proposed model predicts 
the perceptual outcomes of the action, not the actual action. The 
actual action (controlling the robot’s joints) is accomplished by 
the motor control interface embedded in the robot which 
operates the robot’s actuators based on the proprioceptive 
prediction (joint angle positions) given from the model. In this 
sense, the proprioceptive output of the model can be considered 
as the kinematic level representation of the action which 
describes the trajectories of the movement in space and time 
[34, 57]. 

To construct the proprioceptive pathway, a dynamic neural 



SMCA-17-05-0593.R1 
 

4

network called Multiple Timescales Recurrent Neural Network 
(MTRNN) [58] is used. MTRNN is a hierarchical continuous 
time recurrent neural network consisting of a set of layers 
imposed with different temporal constraints. In this sense, 
MTRNN is similar to P-MSTRNN which is used to construct 
the visual pathway. However, it should be noted that P-
MSTRNN imposes additional spatial constraints on neural 
activations so that it is more suitable to process pixel-level 
images of preserving local topology rather than a set of joint 
angles of robots without local topology. The distinctive feature 
of MTRNN is that it can self-organize a functional hierarchy in 
which the robot’s action can be hierarchically represented [58, 
59].  

In the proposed model, the proprioceptive pathway is 
composed of five layers: Proprioception Input and Output (PI, 
PO), Proprioception Fast (PF), Proprioception Middle (PM) and 
Proprioception Slow (PS). Each layer in the proprioceptive 
pathway is imposed with the different temporal constraints. 
More specifically, the progressively larger time constants from 
the lower-level layers to the higher-level layers are assigned as 
suggested in [28, 29, 58]. As a result, the neurons in the lower-
level layers with the smaller time constants exhibit relatively 
faster dynamics compared to the ones in the higher-level layers. 
The PI and PO layers are composed of the softmax neurons 
representing the sparse representation of the robot’s joint 
position values [42]. The neurons in the proprioceptive pathway 
have the recurrent connection between the neurons within the 
same layer. In addition, the neurons in each layer of the 
proprioceptive pathway have the bidirectional connection to the 
neurons in the neighboring layers as well as to the ones at the 
same level in the visual pathway (lateral connection).  

At each time step t, the internal states 𝑝௜
௧ and the activations 
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୲ of the neurons in each layer are computed as follows: 

𝑝௜
௧ = ൬1 −

1

𝜏௜

൰ 𝑝௜
௧ିଵ 

 + 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 1

𝜏௜

ቌ ෍ 𝑘௜௝ ∗  𝑣௝
௧ିଵ 

௝∈௏ೄ

+ ෍ 𝑤௜௞𝑦௞
௧ିଵ + 𝑏௜

௞∈௉ೄ˅௉ಾ

ቍ                            𝑖𝑓 𝑖 ∈ 𝑃ௌ

1

𝜏௜

ቌ ෍ 𝑘௜௝ ∗  𝑣௝
௧ିଵ 

௝∈௏ಾ

+ ෍ 𝑤௜௞𝑦௞
௧ିଵ + 𝑏௜

௞∈௉ಷ˅௉ಾ˅௉ೄ

ቍ                     𝑖𝑓 𝑖 ∈ 𝑃ெ

1

𝜏௜

ቌ ෍ 𝑘௜௝ ∗  𝑣௝
௧ିଵ 

௝∈௏ಷ

+ ෍ 𝑤௜௟𝑃௟
௧  + ෍ 𝑤௜௞𝑦௞

௧ିଵ + 𝑏௜

௞∈௉ಾ˅௉ಷ௟∈௉಺

ቍ    𝑖𝑓 𝑖 ∈ 𝑃ி

1

𝜏௜

ቌ ෍ 𝑤௜௝𝑦௝
௧ + 𝑏௜

௝∈௉ಷ

ቍ                                                                        𝑖𝑓 𝑖 ∈ 𝑃ை

 

(3)

y௜
௧ =

⎩
⎪
⎨

⎪
⎧

exp(𝑝௜
௧)

∑ exp൫𝑝௝
௧൯௝∈௉ೀ

                         𝑖𝑓 𝑖 ∈ 𝑃ை

 

1.7159 × tanh ൬
2

3
𝑝௜

௧൰                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

i denote the index of the neuron, wij is the weight connecting 
the jth neuron to the ith neuron and P is a proprioceptive input. 
The convolution terms in (3) refer to the lateral connection from 
the visual pathway. The softmax activation function is used at 
the output layer (PO) and the hyperbolic tangent recommended 
in [56] is used in the other layers as the activation function to 
enhance the speed of convergence. 

D. Forward Dynamics 

During the forward dynamics computation, the visual and 
proprioceptive predictions are generated with given inputs and 
the initial states of the model. The initial states refer to the 
internal states of the neural units at the beginning of the forward 
dynamics computation. To be more specific, the initial states 
(𝑢௜

௢௫௬
 and 𝑝௜

௢) are given to every layer of the model at the onset 
of computation (t = 0). Then, at each time step t, the visual input 
(a pixel-level grayscale image) and the proprioceptive input 
(the robot’s joint position values) are given to the vision input 
layer (VI) and the proprioception input layer (PI) respectively. 

Then, the internal states (𝑢௜
௧௫௬

 and 𝑝௜
௧) and the activations 

(v௜
௧௫௬

 and 𝑦୧
୲) of the neural units at each layer are calculated 

using (1) ~ (4). Note that the visuo-proprioceptive information 
flows bi-directionally through the lateral connections during the 
forward dynamics computation. 

In our study, two different methods of generating the visuo-
proprioceptive predictions are considered. The first method is 
called an open-loop generation or the sensory entrainment [19]. 
In this method, the input to the model (the visual images and 
the joint position values) represents robot’s current sensory 
perception obtained from the robot’s cameras and the encoders, 
and this external sensory information drives the neural 
dynamics of the model.  

Another method is called a closed-loop generation [19]. In 
this method, the input to the model is not from the external 
environment but from the model itself. That is, the visuo-
proprioceptive prediction generated at the current time step is 
fed back to the input of the model in the next time step. 
Therefore, the closed-loop generation method does not require 
the external inputs from the environment, resulting in the 
mental simulation capability where the dynamic visuo-
proprioceptive sequences can be anticipated [19, 42-48].  

In our experiments, the closed-loop generation was used 
during the training process to achieve the robust mental 
simulation capability. During the testing process, two different 
methods were used to illustrate the key characteristics of the 
proposed model. Specifically, the closed-loop and the open-
loop generation methods were used to examine the model ’s 
performance with and without a prediction error minimization 
mechanism respectively (See Section II.F for a prediction error 
minimization mechanism). 

E. Training the Model 

The model is trained in a supervised end-to-end manner in 
which the visual and the proprioceptive pathways are trained 
simultaneously by directly learning the dynamic visuo-
proprioceptive patterns [28]. In our experiment, the training 
data was collected during the tutoring process in which the 
robot was manually operated by the experimenter. This method 
is known as direct teaching or kinesthetic teaching [25, 60]. 
During the tutoring process, the experimenter demonstrated 
how to imitate the gestures by guiding the robot. While the 
robot was being guided by the experimenter, dynamic visual 
images perceived from the robot’s camera were jointly 
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collected with the joint position values from the encoders in the 
robot’s joints at each time step.  

During the training, the model is trained to generate a one-
step look-ahead visuo-proprioceptive prediction using 
backpropagation through time (BPTT) [61]. The model’s 
learnable parameters, such as kernels (k), weights (w), biases 

(b) and the initial states (𝑢௜
଴௫௬

 and 𝑝௜
଴) of the neurons are 

optimized to minimize the error defined as the sum of the errors 
in the visual pathway (EV) and the proprioceptive pathway (EP). 
Note that the initial states at every layer are obtained for each 
training sequence by computing the partial derivative of the 

error with respect to them (𝑢௜
଴௫௬

=  ൛𝑢௜ଵ
଴௫௬

, 𝑢௜ଶ
଴௫௬

, … , 𝑢௜ே
଴௫

ൟ,

𝑝௜
଴ =  {𝑝௜ଵ

଴ , 𝑝௜ଶ
଴ , … , 𝑝௜ே

଴ } where N is the number of the training 
sequence) to generate the different visuo-proprioceptive 
patterns in the closed-loop manner. The error in each pathway 
is defined as the discrepancy between the predicted and the 
teaching signal (i.e. training data) as follows. 

𝐸 =  𝐸௏ + 𝐸௉ (5)
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௧
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Where 𝑣̅ and 𝑦ത denote the visual and proprioceptive teaching 
signal respectively. Note that the error in the proprioceptive 
pathway is represented by the Kullback-Leibler divergence 
between the teaching signal 𝑦ത and the proprioceptive output y 
(7). 

F. Inferring Internal States through Minimizing Prediction 
Error 

Prediction error minimization is at the core of predictive 
coding [32-34]. Kilner, et al. [34] argued that one could infer 
the underlying cause of an observed action by minimizing the 
prediction error while observing the action. The proposed 
model provides a similar mechanism called an error regression 
scheme (ERS) [42, 62] by which the model minimizes the 
prediction error in an online manner.  

Previous studies [42, 62] have shown that the higher-level 
intention in the observed sensorimotor patterns could be 
recognized by minimizing the prediction errors in an online 
manner. Note that the higher-level intention refers to internal 
cause enabling proactive generation of the visuo-proprioceptive 
patterns and they are specified as the internal states [62]. The 
previous studies have demonstrated the ERS with the single 
modality patterns [42] or in the single pathway that processed 
the multi-modal patterns [62]. In contrast, the ERS used in this 
study can be conducted with the visuo-proprioceptive patterns 
processed in the different pathways. In this sense, the ERS in 
our model is also different from the mental state inference 
(MSI) model [10, 63] which operates on the output in “visual-
like coordinates”. 

The ERS consists of two distinct processes: the top-down and 
the bottom-up processes. In the top-down process, the model 
generates the visuo-proprioceptive predictions in the closed-
loop manner with the given internal states representing the 
intention. In other words, the model predicts the perceptual 
consequence of the intended action as similar to the generative 

or the forward models [3, 34]. In the bottom-up process, the 
desired visuo-proprioceptive sequence is given and the 
prediction error between the desired and the predicted sequence 
is calculated. Then, the prediction error back-propagates from 
the output layers to the higher-level layers along the pathways, 
and the internal states of the neurons are updated in the direction 
of minimizing the prediction error at the output level. During 
the ERS, the top-down and the bottom-up processes are 
iteratively conducted to minimize the prediction error and to 
infer the possible cause of the observed visuo-proprioceptive 
patterns.  

To implement the ERS, two hyper-parameters are required: 
the size of the temporal window and the number of iteration. 
The temporal window with the size of W represents the 
immediate past from the time step t-W to the current time step 
t. The number of iteration denotes the number of updates of the 
internal states conducted at each step during the ERS.  

More precisely, at each time step t, the model generates the 
visuo-proprioceptive outputs (from t-W to t) with the initial 
states of the temporal window ut-W in the closed-loop manner 
(top-down). Note that the initial states of the temporal window 
ut-W refer to the internal states of the neurons in every layer at 
time step t-W. Then, the prediction error within the temporal 
window is computed (8) ~ (10) and back-propagates to update 
the initial states ut-W in the direction of minimizing the 
prediction error (bottom-up) with a learning rate η as illustrated 
in (11). As a result, the neural activation at all levels, as well as 
the visuo-proprioceptive predictions inside the temporal 
window, are updated. This process is iteratively conducted as 
specified by the number of iteration.  

By means of the ERS, the proposed model is capable of 
updating the current intention to match the intention behind the 
perceived visuo-proprioceptive patterns through minimizing 
the perceptual prediction error generated in the immediate past. 
Note that only the initial states of the window ut-W are optimized 
during the ERS and the other learnable parameters are remained 
fixed during the ERS. 

𝑃𝐸௧ =  𝑃𝐸௏,௧ + 𝑃𝐸௉,௧ (8)

𝑃𝐸௏,௧ =  ෍ ෍ ෍൫𝑣̅௜
௦௫௬

− 𝑣௜
௦௫௬

൯
ଶ

௫௬

௧

௦ୀ௧ିௐ

 (9)

𝑃𝐸௉,௧ = ෍ ෍ 𝑦ത௜
௦𝑙𝑜𝑔

𝑦ത௜
௦

𝑦௜
௦

௜

௧

௦ୀ௧ିௐ

 (10)

𝑢௧ିௐ = 𝑢௧ିௐ − 𝜂
𝜕𝑃𝐸௧

𝜕𝑢௧ି௪

 (11)

III. EXPERIMENTS 

A. Experiment Settings 

We conducted a set of experiments using the iCub simulator 
[64] to examine the proposed model. iCub [65] is a humanoid 
robot designed for cognitive and developmental robotics 
research and the iCub simulator provides a virtual environment 
where many of the robot’s functionalities including perception 
and action can be examined. In addition, the iCub simulator and 
the real robot share the same controller interfaces, so that the 
model examined in the simulation environment can be easily 
extended to a real robot setting. Consequently, iCub and its 
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simulator have been widely used in research on cognitive 
robotics and autonomous systems [36, 38, 66-69].  

In our experiments, the robot was trained to imitate the 
gestures of the human subjects displayed on the screen (Fig. 2 
(a)). In the imitation task, the model predicted not only its own 
movement (proprioceptive prediction) but also the movement 
of the human subject on the screen (visual prediction). The 
training data was composed of a set of the visuo-proprioceptive 
patterns collected from the tutoring process prior to training. 
During the tutoring process, the robot was operated manually 
by the experimenter to imitate the gestures of the human 
subjects on the screen (i.e. kinesthetic teaching [60]). At each 
step of the tutoring process, the visual images perceived from 
the robot’s camera showing the gestures of the human subjects 
were jointly collected with the joint position values from the 
encoders in the robot’s joints.  

Regarding the robot’s visual perception, we used the camera 
embedded in the left eye of the robot and the obtained visual 
images were converted to grayscale, resized to 64 (w) × 48 (h) 
and normalized to −1 to 1. Regarding the robot’s behavior, we 
used the five joints (shoulder’s pitch, roll, yaw, elbow, wrist’s 
pronosupination) in each arm (a total number of 10 joints). To 
enhance learning, we used the sparse representation of the joint 
position values as illustrated in [42]. Each joint position value 
was converted into a sparse form represented by the 10 softmax 
neurons. Accordingly, there were 100 softmax neurons in the PI 
and PO layers that consisted of 10 groups, each representing a 
joint position value. Each group was composed of 10 softmax 
neurons. 

Table I shows the values of the network’s hyper-parameters 
including the number and the size of the feature maps and the 
neurons, kernels, weights and the time constants. Those values 
were found empirically in our preliminary experiments and they 
were used throughout our experiments. Regarding the time 
constant settings, we assigned progressively larger time 

constants from the lower levels to the higher levels in each 
pathway as suggested in [28, 29, 55, 58].  

B. Experiment 1. Mental Simulation of the Visuo-
Proprioceptive Patterns 

1) Top-down Proactive Generation of the Visuo-
proprioceptive Patterns  

In the first experiment, we examined the model’s mental 
simulation capability [43-48]. During the training, the robot 
was trained to imitate nine different types of gesture 
demonstrated by three human subjects (Fig. 2 (b)). 
Consequently, a total number of 27 visuo-proprioceptive 
sequences were used in the training. Those gestures consisted 
of the different arm movements: side right, side left, side both, 
up right, up left, up both, wave right, wave left and wave both. 
Each human subject showed slight differences in appearance 
including amplitude and speed of the gestures. Tensorflow [70] 
was used during the training and the model was trained for 
100,000 epochs using the ADAM optimizer [71] with the 
learning rate of 0.0001. At the beginning of the training, the 
learnable parameters were initialized with the neutral values. 
Note that the different initial states were obtained for each 
training sequence, resulting in 27 initial states for each training 
data. After the training, the model generated the trained 
sequences in the closed-loop manner with the given initial states 
obtained during the training. 

The result verified the mental simulation capability of the 
proposed model. Fig. 3 depicts the visuo-proprioceptive 
predictions generated in the closed-loop manner (see the 
supplementary video also). Note that the trajectories of the 10 
joints in the model’s proprioceptive predictions are depicted on 
the same scale although they have different ranges of joint 

Fig. 2.  The experiment setting. (a) The iCub simulator environment showing 
the human gesture on the screen and the robot. (b) The example of the nine 
gestures used in the imitation task. 
  

TABLE I 
THE PARAMETER SETTING USED IN OUR EXPERIMENTS 

  Visual Pathway 

  VI VO VF VM VS 

Time Constants 1 1 2 4 8 

Feature 
Maps 

Number 1 1 4 8 12 

Size 64×48 64×48 60×44 29×21 13×9 

Top-Down 
Kernel 

Size - 5×5 4×4 5×5 - 

Stride - 1,1 2,2 2,2 - 

Bottom-Up 
Kernel 

Size - - 5×5 4×4 5×5 

Stride - - 1,1 2,2 2,2 

Recurrent  
Kernel 

Size - - 2×2 2×2 2×2 

Stride - - 1,1 1,1 1,1 

Lateral    
Kernel 

Size - - 60×44 29×21 13×9 

Stride - - 1,1 1,1 1,1 

  Proprioceptive Pathway 

  PI PO PF PM PS 

Time Constants 1 1 2 4 8 

Number of Neurons 100 100 30 20 10 

Top-Down Weights - 30×100 20×30 10×20 - 

Bottom-Up Weights - - 100×30 30×20 20×10 

Recurrent Weights - - 30×30 20×20 10×10 

Lateral 
Kernel 

Size - - 60×44 29×21 13×9 

Stride - - 1,1 1,1 1,1 
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angles. With the given initial states, the model was able to 
generate a set of the dynamic visuo-proprioceptive patterns 
proactively in a top-down manner without the external inputs. 
That is, based on the model’s own intention specified as the 
initial states, the model anticipated the consequence of its own 
action (proprioceptive prediction) as well as of other’s action 
(visual prediction). Furthermore, the visual prediction 
generated during the mental simulation was in synchrony with 
the proprioceptive prediction, implying the coordinated and the 
tightly coupled vision and proprioception. In addition, as can be 
seen from Fig. 3, the different shapes between the human 
subjects were preserved in the visual prediction. 

To investigate how the robot’s ‘intention’ was encoded 
within the model, we conducted a principal component analysis 
(PCA) on the initial states. Fig. 4 illustrates the internal 
representation of the initial states of the visual pathway (VF, VM 
and VS). In Fig. 4, the X and the Y axes indicate the first and 
the second principal components respectively. The colors 
denote the types of gesture and the alphabet character indicates 
the human subject. 

The PCA results showed that each layer encoded the different 
level of the representation. In the lowest-level layer (VF), the 
internal representations of the training sequences belonging to 
the same human subject were distributed closely. In VM, those 
representations started to form the clusters. Finally, the clusters 
reflecting the type of the gesture appeared in the highest-level 
layer (VS). This implies that the abstract information, such as 
the type of the gesture was encoded in the higher-level layer 
whereas the specific information, such as the shape of a specific 

human subject was encoded in the lower-level layer. In turn, 
this result suggests that the functional hierarchy was self-
organized within the model.  

2) Mental Simulation of the Sequential Visuo-proprioceptive 
Patterns 

To investigate the functional hierarchy of the model, we 
trained the model further with an additional training data. A 
total number of 27 visuo-proprioceptive patterns were used and 
those patterns were generated by concatenating the three visuo-
proprioceptive sequences (primitives) randomly. That is, each 
sequential pattern in this experiment contained randomly 
selected three visuo-proprioceptive patterns of a randomly 
selected human subject. The model’s learnable parameters were 
initialized with the ones obtained from the previous training. 
Then, the network was trained for 50,000 epochs in the closed-
loop manner using the ADAM optimizer [71] with the learning 
rate of 0.0001. Similar to the previous training, the different 
initial states were obtained for each training data during the 
training. After the training, the model generated the trained 
sequences in the closed-loop manner with the given initial states 
obtained during the training (mental simulation). 

Fig. 5 illustrates some examples of the visuo-proprioceptive 
predictions generated in the closed-loop method. The result 
confirmed the model’s mental simulation capability (See the 
supplementary video also). With the given initial states, the 
model was able to generate the visuo-proprioceptive patterns 
consisting of the different primitive sequences and transitions 
between them. Similar to the previous experiment, the visual 
prediction generated during the closed-loop method was in 
synchrony with the proprioceptive prediction, implying the 
coordinated vision and proprioception. Furthermore, it was 
observed that the model was able to generate the sequential data 
of the different human subject, suggesting that the low-level 
representation (appearance of the human subjects) were also 
preserved in the visual predictions. 

In order to clarify the internal dynamics, we conducted a 
PCA on the neural activation in the highest-level vision layer 
(VS) and the lowest-level layers (VF and PF). Fig. 6 illustrates 
the development of the internal representations for the exemplar 
cases. The result showed that the sequential training data was 
hierarchically represented within the model. The lower-level 
layers (VF and PF) were directly related to the current visuo-
proprioceptive sequence being generated whereas the higher-
level layer (VS) showed the switch between the primitive 
sequences. In other words, the low-level representation of the 
visuo-proprioceptive patterns was encoded in the lower-level 
layers meanwhile the higher-level representation was encoded 
in the higher-level layer. This result implies the self-organized 
functional hierarchy within the model. It is assumed that the 
functional hierarchy could be self-organized by means of the 
spatio-temporal hierarchy achieved the different spatio-
temporal constraints imposed on each level of the model. As a 
result, the model was capable of learning compositional visuo-
proprioceptive sequences by means of the self-organized 

Fig. 3.  The visuo-proprioceptive predictions generated in the closed-loop 
method (mental simulation). 
 

Fig. 4.  PCA plot on the initial states of each primitive in the visual pathway
(VF, VM and VS). The horizontal and the vertical axes indicate the first and the 
second principal component respectively. The alphabet character denotes the 
human subject and the colors and the shapes indicate the type of gesture. 
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hierarchy as in [4]. This result is also in line with the previous 
studies [55, 58, 59] that showed the hierarchical representation 
of the action. In sum, the first experiment verified that the 
proposed model was capable of mentally simulating the 
perceptual consequences of the action in a coordinated manner 
by utilizing the self-organized functional hierarchy.  

C. Experiment 2. Inferring Intention States by Prediction 
Error Minimization 

In Experiment 2, we investigated the model’s capability of 
inferring the underlying intention in the observed visuo-
proprioceptive patterns by means of the prediction error (PE) 
minimization mechanism (i.e. error regression scheme, ERS. 
See Section II. F). Since the proposed model generated both 
visual and proprioceptive prediction, the two different 
conditions were examined: minimizing the visual PE and 
minimizing the proprioceptive PE. 

1) Minimizing the Visual Prediction Error  
In the minimizing the visual PE condition, it was assumed 

that the robot observed the human subject’s gestures displayed 
on the screen. Then, the visual prediction error defined as the 
discrepancy between the perceived and the predicted visual 
images (gestures of the human subject) was minimized through 
updating the initial states of the error regression window. Note 
that the model generated both visual and proprioceptive 
predictions in the closed-loop manner, meaning that the visual 
observation was used as the target signal for computing the 
prediction error, not as the input to the model.  

The learnable parameters except the initial states were 
initialized to the values obtained from the previous experiment. 
The initial states of the neurons at each layer were initialized 
with the neutral values. During the ERS, the size of the temporal 
window was set to 20 steps and the initial states of the temporal 
window were updated 50 times at each time step using the 
ADAM optimizer [71] with the learning rate of 0.1. Note that 
only the initial states of the window were updated in the 
direction of minimizing the prediction error during the ERS. 
Two visuo-proprioceptive sequences consisting of the five 
sequential primitive visuo-proprioceptive sequences were used 
during the ERS. One sequence consisted of the visuo-
proprioceptive patterns used in the previous experiment (i.e. 
learned human subject data) whereas another sequence 
consisted of the novel visuo-proprioceptive patterns (i.e. 
unlearned human subject data). 

To examine the importance of minimizing visual PE, we also 
examined the model’s performance without minimizing the 
visual prediction error (sensory entrainment). In the sensory 
entrainment condition, the visual prediction was generated in 
the open-loop manner, meaning that the visual input (pixel-
level image) was given from the external source (camera) at 
each time step. On the other hand, the proprioceptive prediction 
was generated in the closed-loop manner by feeding the 
proprioceptive output at the current time step to the 
proprioceptive input at the next time step.  

The result showed that the model was able to predict the 
movements of the human subject successfully by minimizing 
the visual prediction error (Table II). In the case of the learned 
human subject gesture (Fig. 7 (a)), the model was able to 
reconstruct the gestures showing the shape of the specific 
human subject (MSE = 0.0046). Moreover, the model generated 
the proprioceptive prediction that corresponded to the visual 
prediction, resulting in successful imitation in both learned 
(MSE = 78.92) and unlearned (MSE = 269.91) subject cases 
(See the supplementary video).  

In the sensory entrainment condition, however, the model 
was not able to generate neither the visual nor the 
proprioceptive predictions, leading to unsuccessful imitation. 
This result shows the importance of the prediction error 
minimization in communication and interaction between the 
two agents. Interestingly, in the sensory entrainment condition 
of the unlearned subject case (the bottom row in Fig. 7 (b)), the 
shape of the human subject that appeared in the visual 

TABLE II 
AVERAGE MEAN SQUARED ERROR (MSE) IN THE MINIMIZING VISUAL 

PREDICTION ERROR CONDITION 

 Learned Subject Unlearned Subject 

 Vision Proprioception Vision Proprioception 

Error 
Regression 

0.0046 78.92 0.0063 269.91 

Sensory 
Entrainment 

0.0259 1067.58 0.0374 964.05 

 

Fig. 5.  The closed-loop generation of the sequential visuo-proprioceptive 
patterns. 
  

Fig. 6. The PCA plot showing the development of internal representations in 
VS, VF and PF for the exemplar cases (sequential patterns). The x axis indicates 
the time step and the blue and the red colors denote the first and the second 
principal component respectively.  
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prediction was different from the shape of the human subject in 
the target sequence, but it was closer to one of the trained 

human subjects. This implies that the model predicts the visual 
image not by simply mapping from the visual input in a 

 
Fig. 7.  The visuo-proprioceptive predictions generated in the minimizing visual prediction error condition, tested with (a) the learned human subject gestures 
and (b) the unlearned human subject gestures. 
 

 
Fig. 8.  PCA plot showing the internal representation emerged after the training (solid lines) and during the ERS in the visual PE minimization (dashed lines). 
The X and Y axes indicate the first and the second principal component respectively. The colors denote the type of the gesture. The black arrows in Vision Slow 
(VS) indicate the direction of temporal evolution. 
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previous step, but by recalling the visual representation 
acquired from the training. 

In order to clarify the internal dynamics during the ERS, we 
conducted a PCA on the neural activation at the highest-level 
of the visual pathway (VS) and the lowest-level layers (VF and 
PF). Fig. 8 illustrates the internal representations emerged after 
the training (solid lines) and the ones emerged during the ERS 
(dashed lines). The horizontal and the vertical axes indicate the 
first and the second principal components respectively and the 
colors denote the type of gesture. It was observed the internal 
representations emerged during the ERS were close to the ones 
emerged after the training (i.e. overlapping between the solid 
and the dashed lines in the plots). This result suggests that the 
visual image showing the human subject’s gesture was 
successfully recognized by recalling the corresponding internal 
representations in the model’s repertoire acquired during the 
training. Consequently, the visual prediction of the other’s 
action, as well as the proprioceptive prediction of its own 
action, could be generated, resulting in successful imitation.  

2) Minimizing the Proprioceptive Prediction Error 
In the minimizing the proprioceptive PE condition, it was 

assumed that the desired joint position values were provided 
from the environment and the discrepancy between the 
perceived and the predicted proprioceptive signals was 
minimized through updating the initial states of the error 
regression window. This condition emulates the situation in 
which the user grasps the robot’s arms and moves as he/she 
wants while the robot is imagining the visual imagery of the 
human subject’s gesture that corresponds to the given 
proprioceptive signal. During the ERS, the model generated 
both visual and proprioceptive predictions in the closed-loop 
manner, meaning that the desired proprioceptive pattern was 
used as the target signal for computing the prediction error, not 
as the input to the model. The same network examined in the 
visual PE minimization condition was used in the 
proprioceptive PE minimization condition. A visuo-
proprioceptive sequence consisting of the five sequential 
primitive visuo-proprioceptive sequences was used during the 
ERS. Note that the sequence was different from the training 
data.  

We also examined the model’s performance without 
minimizing the proprioceptive PE (sensory entrainment). In the 
sensory entrainment condition, the proprioceptive prediction 
was generated in the open-loop manner, meaning that the 
proprioceptive input (joint position values) was given from the 
external source (encoders) at each time step. On the other hand, 
the visual prediction was generated in the closed-loop manner 
by feeding the visual output at the current time step to the visual 
input at the next time step.  

Fig. 9 illustrates the target visuo-proprioceptive patterns 
(top), the visuo-proprioceptive predictions generated under the 
minimizing proprioceptive PE condition (middle) and the 
sensory entrainment condition (bottom). In the proprioceptive 
PE minimization condition, the model successfully generated 
the proprioceptive predictions (MSE = 2.70), showing that the 
model was able to adapt to the incoming proprioceptive signals.  

Interestingly, the model was also able to generate the visual 
prediction showing the human subject’s gesture which 
corresponded to the proprioceptive prediction. Although the 
visual prediction was a bit noisy, the gestures appeared in the 
visual prediction were still identifiable (See the supplementary 
video also). As similar to the previous experiment, it is assumed 
that minimizing the proprioceptive PE induced the recall of the 
proprioceptive representation as well as the visual 
representation of the corresponding gesture and in turn, the 
prototypical shape of the corresponding human subject’s 
gestures appeared in the visual prediction. Without the PE 
minimization condition (sensory entrainment), however, 
neither the proprioceptive (MSE = 801.42) nor the visual (MSE 
= 0.0314) predictions were generated successfully, highlighting 
the importance of the PE minimization.  

IV. DISCUSSION 

In this study, we proposed a dynamic neural network model 
which could build a predictive internal model of the 
environment from consolidative learning of spatio-temporal 
patterns. The experimental findings illustrated several key 
characteristics of the proposed model.  

In Experiment 1, it was verified that the proposed model was 
able to anticipate the possible incoming visuo-proprioceptive 

 
Fig. 9.  Visuo-proprioceptive predictions generated in the proprioceptive PE minimization condition (the middle row) and the sensory entrainment condition (the 
bottom row). Note that the desired visual output was depicted to illustrate the desired type of gesture. 
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patterns through mental simulation (closed-loop generation) in 
a top-down manner. With the given intention specified as the 
initial states, the proposed model was able to generate visuo-
proprioceptive predictions for each primitive sequences as well 
as the transition between the sequences in the compositional 
sequences. The mental simulation experiments also revealed 
that vision and proprioception were tightly coupled within the 
model. It is assumed that the coordinated visuo-proprioceptive 
representations were acquired during the consolidative learning 
of the patterns on the tightly coupled structure.  

In addition, the experimental results showed the self-
organized functional hierarchy of the proposed model. The 
analysis on the neural activation revealed that the visuo-
proprioceptive patterns were hierarchically represented at each 
level of the model. That is, the lower-level layers encoded the 
low-level details of the visuo-proprioceptive patterns (e.g., the 
initial states grouped by the human subject in Fig. 4) whereas 
the higher-level layers encoded the abstract information of the 
patterns (e.g., the initial states grouped by the type of the gesture 
in Fig. 4). This finding is in line with the previous studies [28, 
29, 55, 58, 59] and supports the notion of a hierarchical 
representation of actions [34, 57, 72, 73].  

The findings in Experiment 2 highlighted the importance of 
the prediction error minimization, supporting the predictive 
coding account of the MNS as proposed in [34]. First, the 
results showed the role of the prediction error minimization in 
recognition of the intention in the observed patterns. The 
underlying intention in the perceived visuo-proprioceptive 
pattern was recognized by minimizing prediction error between 
the perceived and the predicted patterns. By recognizing the 
intention in the observed patterns, the model was also able to 
predict the possible incoming patterns in the next time step. 
Second, it was observed that minimizing the prediction error in 
one modality induced the recall of the corresponding 
representation in another modality acquired during the training. 
In the visual PE minimization condition, corresponding 
proprioceptive prediction was generated while the visual 
prediction error was minimized. Similarly, in the proprioceptive 
PE minimization condition, the model was able to generate the 
visual imagery showing the human subject’s gesture that 
corresponded to the proprioceptive signals. Previous studies 
have shown the similar findings such that the activation in the 
cortical motor region was modulated when the actions that 
existed in the motor repertoire were recognized [74-76].  

The importance of the prediction error minimization 
mechanism was further highlighted by comparing the model’s 
performance in the sensory entrainment condition (i.e. without 
minimizing prediction error). Although the model was 
equipped with the same perception-action link, the MNS-like 
activity was not developed in the sensory entrainment condition 
in our experiments. Therefore, the MNS-like activity of the 
proposed model can be considered as the consequence of the 
several key features of the model, including the cortical 
connectivity, consolidative learning of the visuo-proprioceptive 
patterns and the PE minimization mechanism as suggested in 
the previous studies [2, 34].  

In Experiment 2, the model was also able to respond to the 
gestures of the unknown human subject, illustrating the 
generalization capability of the proposed model. In our 
preliminary experiment with only one human subject data, we 
observed that the performance of the model with unknown 
human subject’s data degraded. The generalization 
performance of the proposed model is expected to be enhanced 
by incorporating more training data as demonstrated in [55].  

Note that the proposed model exploited the same neural 
architecture for generating the visuo-proprioceptive patterns as 
well as for recognizing the intention in the perceived visuo-
proprioceptive patterns. It has been argued that the same neural 
substrate is shared for both perception and production of actions 
[7, 8]. In sum, the findings highlight the importance of the 
prediction error minimization mechanism in terms of inferring 
higher-level intention as well as recalling the corresponding 
visuo-proprioceptive representations acquired during the 
training. 

There are several directions suggested for future research. 
First, the speed of the ERS should be improved to apply the 
proposed model in a real robot setting. Minimizing prediction 
error in our method requires iterative optimization at each time 
step. A different optimization technique can be examined to 
enhance the speed of the ERS so that it can be applied in real-
time interaction. Second, the scalability of the proposed model 
in the different settings can be also examined. For instance, self-
other distinction based on prediction error as suggested in [1] 
can be examined where visual input contains not only the 
gesture of other’s but also robot’s own. In addition, the 
proposed model can be examined under the circumstances 
where interaction between robots and humans goes through 
multiple developmental stages.  

V. CONCLUSION 

In this study, we investigated how the cognitive-like 
functions, such as mental simulation and intention recognition 
could be developed from consolidative learning of the low-level 
sensorimotor information under the predictive coding 
framework. We proposed a dynamic neural network model 
called P-VMDNN (Predictive Visuo-Motor Deep Dynamic 
Neural Network) which could perceive and predict the dynamic 
visuo-proprioceptive patterns. The experimental results 
validated several core features of the proposed model. First, the 
proposed model was able to develop the predictive internal 
model of the environment by directly learning the visuo-
proprioceptive patterns acquired from the interaction with the 
environment. Due to the spatio-temporal hierarchy of the 
proposed model, the functional hierarchy was self-organized in 
a way that the visuo-proprioceptive patterns were encoded at 
the different level of the representation within the model. 
Second, the experimental results verified the mental simulation 
capability of the proposed model. With a given intention 
represented as the initial states, the model generated visuo-
proprioceptive predictions proactively through the top-down 
process. By feeding its own output to input in the next time step 
(closed-loop generation), the model was capable of mentally 
simulating its own action (proprioceptive prediction) as well as 
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other’s action (visual prediction) without inputs from the 
external world. Third, the experimental results highlighted the 
importance of minimizing prediction error in terms of inferring 
higher-level intention from the observed patterns as well as 
recalling the corresponding visuo-proprioceptive 
representations acquired during the training. The higher-level 
intention in the observed patterns was recognized in the process 
of minimizing prediction error through updating the internal 
states. It was also observed that updating the internal states to 
minimize the prediction error in one modality induced the recall 
of the corresponding representation of another modality, 
resulting in the generation of the corresponding perceptual 
sequences. To conclude, the current study suggests how 
artificial agents can develop higher-level cognitive functions 
from learning to perceive and predict the dynamic sensorimotor 
information. In addition, the findings of the current study 
support the predictive coding account of the mirror neuron 
system as proposed in [34]. The future study should involve 
with scaling of the proposed model experimented with real 
robots allocated with a much longer time period for 
developmental tutoring as well as interaction with human 
subjects. 
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