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Abstract 

The current study presents neurorobotics experiments on acquisition of skills for “communicable 

congruence” with human via learning. A dynamic neural network model which is characterized by its 

multiple timescale dynamics property was utilized as a neuromorphic model for controlling a 

humanoid robot. In the experimental task, the humanoid robot was trained to generate specific 

sequential movement patterns as responding to various sequences of imperative gesture patterns 

demonstrated by the human subjects by following predefined compositional semantic rules. The 

experimental results showed that (1) the adopted MTRNN can achieve generalization by learning in 

the lower feature perception level by using a limited set of tutoring patterns, (2) the MTRNN can learn 

to extract compositional semantic rules with generalization in its higher level characterized by slow 

timescale dynamics, (3) the MTRNN can develop another type of cognitive capability for controlling 

the internal contextual processes as situated to on-going task sequences without being provided with 

cues for explicitly indicating task segmentation points. The analysis on the dynamic property 

developed in the MTRNN via learning indicated that the aforementioned cognitive mechanisms were 

achieved by self-organization of adequate functional hierarchy by utilizing the constraint of the 

multiple timescale property and the topological connectivity imposed on the network configuration. 

These results of the current research could contribute to developments of socially intelligent robots 

endowed with cognitive communicative competency similar to that of human. 

Keywords: Dynamic neural network model, Socially intelligent robot, Self-organization, Compositional 

semantics, Functional hierarchy 



1. Introduction 

Recently, studies on socially intelligent robots (Breazeal, 2004; Dautenhahn, 2007) have attracted 

much attention in the research field of intelligent/cognitive robotics. The main motivation of these 

studies is to investigate theories and methods for building robots that can perform human-like 

interactions with other agents, including human as well as other robots, autonomously (Breazeal, 

2004). Studies on socially intelligent robots inherit some of their design philosophy, as discussed in 

behavior-based robotics, sourced from Rodney Brooks (Brooks, 1986) in the late 80s. Although 

conventional studies on intelligent robots attempted to add behavioral components at a later time, 

having the basic components on “intelligence” for thinking and cognition built first, the researchers in 

behavior-based robotics fields did otherwise. By following the thoughts of embodied mind (Rosch, 

Thompson, & Varela, 1992), they considered that these two processes of thinking and acting should 

be organized inseparably. Similarly, the researchers in socially intelligent robotics consider the 

processes of thinking, acting, and communicating as one inseparable process (Billard & Dautenhahn, 

1998; Breazeal, 2004; Dautenhahn, 2007). 

 Recently, not only academia, but also commercial industries, have made great efforts in the 

development of socially intelligent robots for possible use as home-robots or pet-robots. Such 

examples can be easily found, including the dog-like robot, AIBO, developed by Sony (Fujita & 

Kageyama, 1997) and a human-interacting humanoid robot, Pepper, by Aldebaran (Aldebaran, 2014). 

They proposed new types of home entertainment for family members through interaction with these 

robots.  

 Some other researchers, especially in the research field referred to as developmental 

robotics (Asada et al., 2009; Cangelosi et al., 2010; Lungarella, Metta, Pfeifer, & Sandini, 2003), have 

tried to apply various psychological aspects evidenced in human infant development, in building 

cognitive models of socially intelligent robots. At the same time, they attempted to contribute to the 

understanding of the underlying mechanism or principles for the development of social cognitive 

functions via their reconstruction in robotics experiments, by utilizing psychologically and 

neurobiologically plausible models. These social cognitive functions include learning to imitate action 

demonstrated by others (Billard, 2002; Demiris & Hayes, 2002; Gaussier, Moga, Quoy, & Banquet, 

1998; Ito & Tani, 2004; Schaal, 1999), emergence of turn taking skills such as switching between 



following and followed among simulated agents (Iizuka & Ikegami, 2004) as well as between human 

and robots (Nadel, Revel, Andry, & Gaussier, 2004), or joint attention for achieving coordinated 

behaviors between human and robots (Nagai, Hosoda, Morita, & Asada, 2003; Triesch, Teuscher, 

Deák, & Carlson, 2006). However, such reconstructions of social cognitive functions through learning 

have not well addressed the problem of how cognitive competency of systematicity (Cummins, 1996; 

Fodor & Pylyshyn, 1988) can be developed and also how the contextual flow in particular social 

cognitive tasks can be captured via iterative learning of the social experiences in the adopted tasks. 

 The current research aims for reconstruction of cognitive mechanisms with systematicity and 

context dependency in a neurobiologically plausible manner in a macroscopic sense, which enables 

robots to perform communicably congruent tasks with human subjects via learning from own sensory-

motor experiences. Here, systematicity especially in language processing refers to the cognitive 

capability of a human to infer the meaning of unknown sentences from known sentences, by 

extracting compositional semantic rules from them. In the adopted communicably congruent tasks in 

the current study, we utilize human gestures characterized by systematicity as communicative 

modality. (It has been shown that human natural gesture recognition capability is also endowed by 

systematicity (Cassell, Kopp, Tepper, Ferriman, & Striegnitz, 2007; Streeck, 1993).) More specifically, 

a humanoid robot is tutored to generate specific compositional motor primitive patterns as 

corresponding to imperative gestures demonstrated by the human subject. An importance here is that 

the imperative gestures demonstrated by the human subject consists of various combinatorial 

sequences of movement patterns by following a predefined compositional semantic rules. For 

example, the robot is requested to respond by generating particular sequences of movement 

primitives either in order or in reverse order as well as either slowly, normally or quickly as specified 

by imperative gesture demonstrated. 

 A technical challenge is to achieve systematicity whereby the robot should become able to 

infer the underlying meaning or intention for newly demonstrated gesture patterns by means of 

generalization via learning of prior experienced ones. A difficulty arises because the adopted task 

uses continuous dynamic patterns of human gesture as well as robot motor response for the 

communication channel instead of language of discrete symbol sequences. Those dynamic patterns 

are not always repeatable with variance in their profiles and features. Additionally, in the adopted 

communicable congruence task, there are no cues that explicitly indicate the structures of the 



adopted tasks to the robot. First, there are no explicit cues that indicate types of movement patterns 

performed by the human subject. The demonstrated movement patterns could be either movement 

primitives to be memorized for regeneration or commands in specifying order of regular or reverse, or 

with a speed of slow, normal or fast. The underlying type structures should be learned from scratch 

out of iterative experience of continuous perceptual patterns in demonstrated gesture. Also, there are 

no explicit cues to segment on-going task flow between the human demonstration phase and the 

robot response phase in the course of continuous alternation of these two phases. The turn taking 

between these two phases should be developed autonomously in the course of learning of examples.  

 Furthermore, the robot should be able to keep the context of the task flow during each 

session -- observing the imperative gesture first, and then generating corresponding behaviors, and 

meanwhile, the accumulated context in the previous session should be reset in the beginning of new 

session. Such control of the contextual flow, as well as the control of turn taking, are considered to 

belong to another human specific cognitive capability, which should be developed gradually via 

iterative learning of task examples. Although the current cognitive task using a particular set of 

imperative gestures may not replicate our everyday social cognitive behaviors exactly, human, 

certainly, use gestures to achieve communication characterized by systematicity and context 

sensitivity (Arbib, 2012; Bowie, 2008; Kendon, 2004). It can be said that the current robotics 

experiment attempts to model such social cognitive competency of human in an abstract manner. 

 Here, the technical challenges focused in the current research are summarized as: (1) the 

adopted MTRNN can achieve generalization by learning in the lower feature perception level by using 

a limited set of tutoring patterns, (2) acquisition of compositional semantics with generalization for 

achieving communicable congruence tasks characterized by systematicity, (3) development of 

cognitive mechanism for controlling the turn-taking process as well as controlling the contextual flow 

as situated to on-going task processes. The aforementioned technical challenges of targeting 

development of the cognitive competency characterized by systematicity and context dependency out 

of lower level perceptual experiences are considered to be novel as compared to those prior-existing 

studies aiming to reconstruct social cognitive functions via learning, as previously mentioned. 

Therefore, these technical challenges could contribute significantly to the realization of socially 

intelligent robots. 

 For the purpose of accomplishing the aforementioned challenges, the current study takes on 



an approach based on the paradigm of dynamical systems and self-organization in modeling the 

development of target cognitive-behavioral processes, because the research outcomes accumulated 

for two decades have shown that this approach is one of the best to account for the essence of the 

embodied cognition (Beer, 2000; Clark, 1999; Kelso, 1997; Lewkowicz & Lickliter, 1995; Port & Van 

Gelder, 1995; Tani, 1996; Thelen, 1994). The current research especially follows the results from the 

study conducted by Yamashita and Tani (Yamashita & Tani, 2008), which conjectured on how actional 

compositionality may be developed by self-organization of particular dynamic neural network models 

via iterative learning of sensory-motor experiences. They showed that functional hierarchy for 

generating complex behaviors can be developed through iterative learning of sensory-motor 

experiences by utilizing the reported multiple timescales recurrent neural network (MTRNN) model. In 

their study, it was shown that a set of behavior primitives can be learned in the fast timescale 

dynamics of the lower level subnetwork, whereas sequential combinations of these behavior 

primitives are learned in the slow timescale dynamics of the higher level subnetwork. The current 

study is related also to a robotics study on the associative learning between proto-language and 

behaviors conducted by Sugita and Tani (Sugita & Tani, 2005) by utilizing a version of recurrent neural 

network (RNN), so-called the recurrent neural network with parametric bias (RNNPB). This study 

investigated how the compositional semantic rules can be extracted with generalization from the 

iterated tutoring experience by learning. 

 The current research attempts to apply these frameworks to realization of a communicably 

congruent response of robots to humans i.e., robots generating corresponding or expected actions to 

gestures demonstrated by a human, which is characterized by systematicity and context sensitivity. 

Detailed analysis on the results of the robotics experiment will clarify how the cognitive competency 

necessary for achieving the aforementioned communicative skills can be developed in the course of 

self-organizing adequate dynamic structures in the adopted dynamic neural network model. Next 

section will describe general idea of the adopted human-robot communicably congruent task which is 

followed by the descriptions of the employed model and a set of experiments performed. 

 

2. General description of the current task. 
 
Tasks in this paper were designed to investigate how robots implemented by the MTRNN model 



becomes able to generate adequate behavioral responses by recognizing compositional 

communicative gestures demonstrated by human subjects via iterative learning through tutoring. The 

communicable congruence tasks by robots with human examined in the current study are designed to 

investigate the technical problems described in the previous section. We designed the following tasks 

for addressing these technical problems.  

Communicably congruent tasks in the current study consist of sequentially-dependent 

imperative gestures demonstrated by a human and corresponding responses generated by a robot. 

An imperative gesture is a sequential combination of human movement patterns: 3 different 

movement primitives, 2 different order commands and 3 different speed commands. Note that the 

following is a representative task with the most complex experimental conditions. In such condition, 

one to three human movement primitives were demonstrated in sequence first, followed by an order 

command and then a speed command. Human movement primitives determine the corresponding 

robot motor primitives that have to be generated in the response phase by the robot. Order 

commands are verb-like commands indicating either forward or reverse order in generation of motor 

primitive sequences. Speed commands are adverb-like commands indicating speed of robot motor 

pattern, i.e. either fast, normal or slow. A corresponding robot response is sequential combination of 

motor primitives resulting from movement primitives, and its order and speed were determined by 

order command and speed command. The number of all possible pairs of imperative human gesture 

and corresponding robot response turns out to be 234. After demonstrating certain human movement 

patterns, a human subject goes back to the home position and stays for 5-10 time steps. After 

demonstrating certain robot movement patterns, a robot returns to home position and stops for 12 

time steps. Figure 1 shows example pairs of imperative human gesture and robot response in the 

adopted communicably congruent tasks. (We also conducted simpler tasks for other experiment 

purpose as described later.) 

 
 
 
 
 
 
 
 
 
 
 



 
Figure 1. Examples of pairs in the communicably congruent task. A human demonstrates an 
imperative gesture pattern, and after some delay, a robot generates the corresponding response. An 
imperative gesture consists of the movement primitives, order and speed commands. 

 

It is noted that the robot has to learn how to produce a communicably congruent response 

via iterative supervised training by human tutors. For each tutoring session to produce a 

communicably congruent response, the robot receives continuous sequences of movement patterns 

observed in the human gesture demonstration, followed by continuous sequences of patterns of its 

own movements in terms of proprioception (motor joint angles) provided through guidance by the 

human tutors. The session of the tutoring is repeated for many different pairings of the imperative 

human gesture patterns and their corresponding robot responses. The MTRNN model described later 

is used for batch learning of the visuo-proprioceptive sequence patterns collected through the 

accumulated tutoring sessions. 

The aforementioned communicably congruent tasks are not trivial for the following reasons. 

First, both imperative human gestures and the corresponding robot responses are a combination of 

movement patterns. Second, the imperative gesture is generated by following compositional semantic 



rule; a human subject can demonstrate one to three movement primitives before demonstrating 

commands. Third, the same movement patterns could have different meanings depending on their 

previous pattern’s type. For example, in Pair-B in Figure 1 although two succeeding reverse order 

command and the normal speed command are in the same shape, their types are different. Note that 

there is no explicit cue, e.g. symbol or label, in sensory-motor flows that network can utilize to 

segment between the human movement primitives and the commands or the human gesture phase 

and the robot response phase. The proposed network has to develop cognitive function to segment 

patterns and phases and to extract the underlying meanings and rules among those segments by just 

going through iterative learning of the continuous sensory-motor flows. 

 In some experiments described in the current paper, test trial was conducted for a single 

session consisting of a pair of human gesture part and robot action generation part. In other 

experiments, test was conducted for multiple concatenated sessions without break between the 

sessions. The latter case is more challenging because the end of each session has to be recognized 

autonomously by the robot. 

Following are the details of the human movement patterns and robot motor primitives. The 

human movement patterns are left and right arm movements. Trajectory data of the arm movement 

patterns were recorded by tracking xy position of the palm positions through the KINECT skeletal 

tracking system (Zhang, 2012) while a human subject performed the movement patterns. For all 

dimensions, the position value for initial position was 0, and the range of the position values was [-1:1] 

for Experiment 1 and [-0.8:-0.8] for Experiment 2 and 3. We employed the humanoid robot NAO as an 

intelligent robot agent for the communicably congruent task. To get trajectory data of the motor 

primitives of the robot action, the human experimenter guided both arms of the NAO by moving NAO’s 

arms. While guiding, we encoded 4 joint angles comprising shoulder rolls and pitch angles of both 

arms. Ranges of the angles were [-0.8:0.8]. The sampling rate of both human movements and robot 

motor primitives were 10Hz.  

Human movement patterns and robot motor primitives adopted in this study are described in 

Figure 2. Figure 2 (a) shows correspondences between the human movement primitive patterns 

demonstrated and the robot motor primitive patterns responded. There are three pairs. Figure 2 (b) 

shows the forward and reverse order command patterns demonstrated by the human subject. Figure 

2 (c) shows the speed command patterns for slow, normal and fast. It is noted that the normal speed 



command case is tricky. The rule here is that when the same pattern with the order command 

demonstrated immediately before appears, it should be interpreted as the normal speed command. 

This type of communicative semantic rule was adopted for the purpose of examining the capability of 

the model to cope with context dependent parsing of demonstrated patterns. 

 

 
Figure 2. Human imperative gesture movement patterns and robot motor primitive patterns used in 
the task. (a) Three corresponding pairs between human movement primitives and robot motor 
primitives, (b) order command patterns for forward and reverse and (c) speed command patterns for 
slow, normal and fast. 
 

3. MTRNN used in the current experiment 

The MTRNN model used in the current study consists of multiple subnetworks characterized with 

different timescale dynamics in neural activity. The network is expected to generate adequate motor 

response in adequate timing by receiving continuous flow of visual perception from Kinect without 



being provided with task related cues by the experimenter. In the previous study for compositional 

action generation using MTRNN (Yamashita & Tani, 2008) or (Tani, 2003), the intention to select 

which action sequence to be generated was given by the experimenter by setting specific values to 

the initial states of the internal (context) units of the MTRNN or to the PB unit states of the RNNPB. In 

the current study, the intention for generating a particular motor response is not given by the 

experimenter but expected to be built up in the internal (context) dynamics while perceiving 

continuous flow of the human gesture patterns by setting the initial state of the internal dynamics with 

neutral value. After the human ceases demonstration of the gesture, the motor response is 

autonomously generated as reflected with the top-down intention built up in the internal dynamics so 

far. It is highly speculated that such mechanism of turn taking from observation of the gesture to 

generation of own action can be developed in the dynamical structure of the network model if the 

network is trained with sufficient amount of tutoring for pairing observation of the gesture and 

generation of own corresponding motor response. Next subsections describe details of the adopted 

network model. 

 

3.1 Model architecture. 

We extended the MTRNN model (Yamashita & Tani, 2008) which is composed of multiple levels of 

subnetworks characterized by different timescale dynamics. Each subnetwork contains a set of leaky-

integrator type neural units of which dynamic follow the following differential equation Eq. (1).  

߬௜ݑሶ ௜,௧ ൌ െݑ௜,௧ ൅෍ݓ௜௝ݔ௝,௧
௝

൅	෍ݓ௝௟ܿ௟,௧ିଵ
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where ݔ௝,௧, ݑ௜,௧, 	ܿ௟,௧ represent the ݆th input, ݅th internal state, and ݈th context activation value at 

time 	ݐ, respectively, 	߬௜ is the time constant of the ݅th input-output and context units, ܫ ,ܥ	and 	ܱ 

are the neuron indices of the context, input, and output layers, and ݓ௝௜ is the ݅th unit to ݆th unit 

connectivity. Here, context units are neural units which do not have direct inputs and outputs. From Eq. 

(1), it can be seen that the larger the time constant, the longer the neural activation state integrated 

through time. Yamashita and Tani (Yamashita & Tani, 2008) showed that a group of neural units with 

larger or smaller time constant tends to capture longer or shorter time correlation structures through 

learning, respectively. 



A typical architecture of MTRNN adopted in the current experiments is shown in Figure 3.  

 
Figure 3. The whole system architecture for the performing the communicably congruent tasks with 
MTRNN. SMT denotes softmax transformation. ݔ௏,௧

ௌெ் and ݔ௉,௧
ௌெ் are the vision and proprioception 

inputs, respectively. ݔ௏,௧ାଵ
ௌெ்  and ݔ௉,௧ାଵ

ௌெ் , are vision and proprioception prediction outputs, and ̅ݔ௏,௧ାଵ
ௌெ்  

and ̅ݔ௉,௧ାଵ
ௌெ்  are their targets. ߬ is the time constant of the context unit. ܿ௧ and ݑ௧ are the activation 

value and internal state of the context unit at time step ݐ, respectively. 
 

This particular network architecture consists of four subnetworks, the fast context dynamics 

subnetwork assigned with the smallest time constant ߬ଵ , the intermediate-1 context dynamics 

subnetwork with next small ߬ଶ, the intermediate-2 context dynamics subnetwork with medium	߬ଷ, and 

the slow context dynamics subnetwork with the largest ߬ସ, in which the input and output units are 

connected to the fast context dynamics subnetwork. It is, however, noted that number of subnetworks 



could be different depending on the task property, as seen in the later described analysis.  

The input is sent from the motion tracker (4 dimensional position data measured for left hand 

and right hand of the human subject as denoted by ݐ,ܸݔ) and from the NAO robot guided by the 

experimenter (the encoder reading of 4 DOF joints as denoted by ݐ,ܲݔ). We used the softmax 

transformation to the inputs. Softmax transformation is independently applied to each dimension of 

the Kinect inputs and the proprioception inputs. These transformed data were used as the input (ݔ௏,௧
ௌெ் 

and ݔ௉,௧
ௌெ்) and target-output (̅ݔ௏,௧ାଵ

ௌெ்  and ̅ݔ௉,௧ାଵ
ௌெ் ) of the network. The following equation, Eq. (2), 

describes the softmax transformation (Bishop, 2006): 
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	݌ݔ݁

െ‖݇௜௝ െ ݇௜,௧
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∑ 	݌ݔ݁
െ‖݇௜௝ െ ݇௜,௧

௦௔௠௣௟௘‖ଶ

௝∈௓ߪ

  (2)

where ݇௜,௧
௦௔௠௣௟௘ indicates position value of the ݅th dimension at time ݐ, ݇௜௝ is the value of the ݆th 

element of the ݅th dimension’s reference vector, ߪ is a constant that determines sharpness of the 

distribution, and ݌ are transformed vectors. Values of the elements of the reference vectors are 

calculated by the following Eq. (3): 

݇௜௝ ൌ െܤ௜ ൅ 2
௜ܤ

݈ሺ݅ሻ െ 1
ሺ݆ െ 1ሻ  (3)

where ݈ሺ݅ሻ is the length of the ݅th dimension’s reference vector and ܤ௜ is the ݅th dimension’s upper 

bound. We use 0.01 as a ߪ, and 9 for ݈ሺ݅ሻ for all ݅. 

A part of output values is sent to the robot controller as 4 DOF motor joints target denoted by 

௉,௧ାଵݕ
ௌெ்  and the remained part provides next time step prediction of the 4 dimensional position data of 

the human subject hands. The adjacent context dynamics subnetworks are connected mutually by 

synaptic weights but not for distant subnetworks. The detail configuration of the architecture such as 

number of the subnetworks can vary depending on the purpose of each experiment. 

 

3.2 Forward dynamics and training 

For given connectivity weights, the forward dynamics of all neural units including output units and 

context units in different timescale subnetworks are computed by following Eqs. (4~6).  
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ܿ௜,௧ାଵ ൌ ݂൫ݑ௜,௧ାଵ൯  (5)

௜௝,௧ାଵݕ ൌ
exp൫ݑ௜௝,௧ାଵ൯

෌ exp൫ݑ௜௞,௧ାଵ൯݇
ሺ	݅ ∈ 		ܸ, ܲ	 ∧ 		݆, ݇ ൌ 1,2, … , ݈ሺ݅ሻሻ  (6)

where ܸ and ܲ are sets of indices corresponding to vision and proprioception, and f() is hyperbolic 

tangent. The output ݕ௜௝,௧ାଵ is computed by using the softmax function. This softmax output activation 

function is used to help learning by making the output activate sparsely. The forward dynamics 

generates a sequence of one-step prediction for the output vector. In the current study, the initial 

internal state of each context unit is set with a neutral value of 0.0. 

 The training of the network is conducted by means of off-line supervised teaching with target 

training sequences. The training sequence data consists of 4 dimensional motion tracker values at 

each step obtained from Kinect and 4 dimensional motor joint positions at each step obtained from 

the robot guided by the experimenter. Each sequence data is obtained from each trial of tutoring for 

one session (a pair of imperative gesture and corresponding motor generation) or across multiple 

sessions iterated depending on the experiment task. Multiple training sequences are used to train the 

network such that generalization can be achieved in learning. 

A learning scheme referred to as back-propagation through time (BPTT) algorithm 

(RUMELHART, Hinton, & Williams, 1986) is utilized for training of the network. The network was 

trained to optimize its learnable parameters to minimize the following objective function. The objective 

function is the Kullbak-Leibler divergence between the target in the next step and its prediction output, 

as described in the following Eq. (7). 

ܧ ൌ෍෍ݕ௜,௧ାଵlog	ሺ
௜∈ை

௜,௧ାଵݔ̅
௜,௧ାଵݕ

	ሻ
௧

  (7)

where ̅ݔ௜,௧ାଵ is next step target output. The learnable parameters consist of connectivity and bias are 

updated in a direction of minimizing prediction error, i.e. opposite direction to that of the gradient 
డா

డఏ
 

as described in Eq. (8). 
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ܧ߲
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  (8)



where ߠ indicates learnable network parameters consist of connectivity and bias, ݏ is the index of 

training sequences, ߙ is learning rate. 
డா

డ௪೔ೕ
 and 

డா

డ௕೔
 are computed by following Eqs. (9) and (10). 
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The delta error of the ݅th unit at time ݐ is calculated from the following Eq. (11). 
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where, ݂′ሺሻ is the derivative of the hyperbolic tangent, ߜ is Kronecker delta function, and ܧ௧ is the 

objective function at time step ݐ. For the ݅th context unit, the delta error is recursively calculated as 

described in second line of Eq. (11). In this recursive calculation process, ߬௜ determines how much 

the delta error of ݅th context unit will be preserved with slow attenuation, and it will filter out instant 

fluctuations in the backpropagation process. Therefore, for example, the slow dynamics subnetwork 

that has a large time constant can learn long timescale correlation in the input and target. On the 

contrary, fast dynamics subnetwork can learn short timescale correlation independent from the long 

timescale correlation without filtering out fast changes in delta error and fast attenuation of it.  

As can be seen in Figure 3, the MTRNN is a type of deep neural network, which has a deep 

hierarchical structure of multiple subnetworks and each of them has different timescale dynamics with 

a different time constant. Therefore, the network would learn multiple timescale correlations and self-

organize into a functional hierarchy between multiple subnetworks by utilizing its hierarchical structure 

and multiple timescale dynamics. As a result of the learning by means of prediction error minimization, 

the network becomes able to represent the states of both the environment and itself, and makes links 

between them at the level of the slow dynamics subnetwork. This permits the network to develop 

adequate cognition for communicating with others in the outer world. 

The initial values of weights and biases are randomly set with a Gaussian distribution. The 

range of the Gaussian distributions are [-0.1, 0.1] for the weights and [-1, 1] for the biases. The initial 



learning rate was set as 0.1 	݈ܽݐ݋ݐܶ ∗ ݀	ൗ , where ݈ܶܽݐ݋ݐ means summation of the time step over all 

training sequences, and ݀ is dimensionality of the output.  

In order to accelerate the learning speed as well as to achieve better generalization capability, 

a scheme of adaptive learning rate was employed. Duffner and Garcia (Duffner & Garcia, 2007) 

introduced the adaptive learning rate method in which learning rate is adjusted based on the 

validation errors, and they showed that the method can improve both convergence speed and 

generalization capacity. The training algorithm employed in the current model employs this scheme. 

Details of the adaptive learning rate algorithm is given in Appendix A. Furthermore, we noticed that it 

is technically important to select the best learning parameter values of the weights and biases 

developed in the course of the training process because the learning error often fluctuates as the 

training proceeds in the preliminary study. We employed a scheme of selecting the best learning 

parameters obtained in the course of the entire training process, whose scheme is described in 

Appendix-B. 

  

4. Experiments and analysis of the results 

A series of experiments on human-robot communicative skills based on learning was conducted for 

the purpose of examining a set of essential problems described previously. More specifically, the 

Experiment-1 examines the capability of the network model for the feature level generalization in 

learning of pairs of relatively simple gestures and motor responses. Experiment-2 investigates the 

generalization capability of the network model at the cognitive level in extracting compositional 

semantic rules from demonstrated imperative gestures. Experiment-3 examines the development of 

the cognitive mechanism, by which adaptive control of the contextual memory could be achieved.  

 

4.1 Experiment 1: Lower feature level generalization 

Human gesture movement patterns cannot be generated steadily. Even when the human subjects are 

asked to repeat the same movement patterns, features of patterns such as speed or amplitude can be 

vary at every trial. However, it is assumed that human can recognize the same category of movement 

pattern regardless of variations in various features by means of generalization by extracting invariant 

features. Then, a question is that if the MTRNN model can exhibit a similar robust recognition for 



demonstrated movement patterns by means generalization through learning, how much amount of 

variant patterns in combination of different features are necessary as for training exemplar for 

achieving successful generalization. 

In order to investigate the aforementioned problem, an experiment was conducted by 

adopting a simpler task setting as compared to the general task described in the previous section. An 

imperative gesture in this experiment consists of one movement primitive selected among a total of 3 

different primitives, followed by the forward order and the normal speed commands. The movement 

primitive patterns were demonstrated with variations of 7 different amplitudes (AMP) and 7 different 

velocities (VEL). Then, the robot had to generate the corresponding motor primitive pattern with the 

normal amplitude and with the normal speed. Movement primitives composed of different variant 

features, in these experiments, were made in the following manner. First, each primitive was 

demonstrated in 7 different trials and within each trial it was introduced in differing amplitudes, 70, 80, 

90, 100, 110, 130 and 150%, respectively. After that, the primitives were artificially stretched in time. 

The mean amplitudes of each movement primitive were 0.288, 0.364, and 0.514, and the standard 

deviations of amplitudes of each primitive were 0.070, 0.092, and 0.128, respectively. The 

performance of generalization in learning was tested with different networks trained with 4 different 

size of training data sets. Table 1 describes variations of each movement primitive pattern prepared 

for the training data set. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 

 
The configuration of each training data set. 

 

The human movement patterns were generated with seven different amplitudes: 70, 80, 90, 

100, 110, 130, and 150%, and seven different velocities: 50, 70, 80, 100, 110, 130 and 150%. 

Consequently, each human movement primitive pattern can be demonstrated with 49 different 

variations using combinations of the amplitude feature variation and the velocity one. Human 

movement primitives 1, 2, and 3 were denoted by P1, P2, and P3 in the tables, respectively. Each slot 

represents different combination of velocity variation and speed variation. For example, Table 1 (a) 

denotes that P1, P2 and P3 are prepared with only 100% amplitude and 100% velocity cases in the 

training dataset 1. Table 1(b) denotes that more variations are added for P1 velocity and P2 amplitude 

in the training dataset 2. Table 1(c) and Table 1(d) denote that further more variations are added in 

both velocity and amplitude features for all movement primitive patterns. Three sample sequences 

used for each combination of amplitude and velocity for obtaining enough sequences to use the 

training method utilizing validation data set (see Appendix-A, B). The ratios of training pairs to test 

pairs in 4 different data set were 3/144, 7/140, 15/132, and 27/120. 



 For the test of the generalization performance of the trained network, all imperative gesture 

movement primitive patterns which were not utilized in the training dataset were used for and success 

rate of responding with correct motor primitive patterns was counted. The number of context 

dynamics subnetworks was set with 3. The first context dynamics subnetwork consists of 30 units with 

tau = 2, the intermediate one does of 20 units with tau = 5, the slow context dynamics subnetwork 

does of 6 units with tau = 30. The network was trained with 4 different datasets denoted in Table 1 

with the training method explained in Section 3.2. For each data set, the network was trained three 

times with initial parameters differing each time. The number of training iteration was with 300,000. 

The best epoch in the training result was selected by the prescribed criteria (see appendix-B). After 

training with each dataset, the success rate in the congruent response by the robot was obtained as 

follows. The success rate was measured by counting the number of the tasks that the network 

successfully performed. If the mean KL-divergence between the proprioception target sequence and 

the output sequence was lower than 0.01 during the motor response, the trial was considered as 

successful. 

The results for all training datasets are summarized in Figure 4. It can be seen that the 

success rate for unlearned test trial case increases as the number of the training sequences is 

increased. In the cases of using the dataset 3 and the dataset 4, the average success rates for the 

test trials becomes more than 92%. It can be said that the network can achieve relatively good 

generalization in recognition of demonstrated gesture patterns with the feature level variation by 

learning with limited amount of training dataset. 

 
Figure 4. Comparison of the success rates of test data for 4 different sets. P1, P2, and P3 denote 
movement primitives in gestures. For each data set, the success rates of test pairs containing 
different movement primitives, P1, P2, and P3, are individually shown in this figure. Error bar indicates 
the degree of standard deviation. 



4.2 Experiment 2: Development of systematicity  

Acquiring compositional semantic rules from gesture-response pairs by learning is an essential 

problem for development of human-like socially communicative robots. This is because humans can 

generate numerous expressions even by combining a small number of components in different order. 

For example in the current experiment, the human subject can demonstrate 234 different imperative 

gestures which can be generated by arranging only 3 different human primitives in sequential 

combinations, 2 order commands, and 3 speed commands in different sequences. Furthermore, same 

movement primitive patterns in human gestures can have different meanings depending on the 

context, such as the case of the semantic rule adopted for the speed command as described 

previously. Because it is tedious to train all possible combinations of gesture patterns to the robot, it is 

highly desired that the network model can learn to extract the underlying compositional semantic rules 

from partial training exemplar. 

 Sugita and Tani (Sugita & Tani, 2005) showed that semantic compositionality comprised of 

combinations of 3 transitive verbs and 3 object nouns which is mapped to 9 different action categories 

can be learned with generalization by using 7 pairs out of 9 all possible combinations for the training. 

The current experiment examines the case of learning more complex communicably congruent tasks 

where the number of all possible combinations in imperative gesture is 234.  

 In Experiment 2-1, we examine the capabilities of the MTRNN by training with a part of the 

all possible imperative human gesture and corresponding robot response pairs, and tested by using 

the unlearned pairs. The task design follows the one described in Section 2 in which exact profiles of 

the human movement primitive patterns and the robot motor primitives patterns used in this 

experiment are shown in Figure 2. We examine the effect of amount of training data on the 

performance of generalization in learning by repeating the learning and test experiment with changing 

the training dataset. In Experiment 2-2, we investigate the contribution of the multiple timescale 

property assigned to the subnetworks as well as topological organization among the subnetworks to 

the task performance by changing the timescale as well as the topological connectivity condition. 

 

4.2.1 Experiment 2-1: Acquisition of compositional semantic rules 

We conducted the experiments of learning and testing by changing the amount of training pairs, the 



one with 156 pairs and the other with 78 pairs. In training condition 1, two thirds of all possible pairs, 

i.e. 156 pairs, were used for training dataset and the remaining 78 were used for test dataset. The 

training data set included the validation dataset (see the appendix-A) which were composed of 12 

pairs. In training condition 2, 78 pairs were used for training data set including 6 pairs used for the 

validation dataset, and the remaining 156 pairs were used for the test data set. The number of context 

dynamics subnetworks was set with 4. The fast context dynamics subnetwork consists of 30 units with 

tau= 2, the intermediate-1 one does of 30 units with tau= 5, the intermediate-2 one does of 20 units 

with tau= 10, the slow context dynamics subnetwork does of 20 units with tau= 60. The network was 

trained 3 times with different initial learnable parameters.  

 The experiment resulted as follows. In training condition 1, the average success rate was 

87.0% for the test sequences and 99.4% for the training sequences. In training condition 2, the 

network showed poorer result with average success rate of 46.3% for the test sequences and 93.3% 

for the trained sequences. The network showed better generalization result when amount of training 

pairs was increased as expected. (A demonstration video of an example of the robot performance in 

one of the adopted tasks, after trained in training condition 1, can be seen by clicking here or in 

http://neurorobot.kaist.ac.kr/video/Gibeom_NN_demo_video_20150213.mp4). 

 Figure 5 and Figure 6 illustrate how the slow and fast context dynamics developed, in test 

trials, respectively, along with perception of the human gesture patterns and generation of the motor 

response after the network was trained in training condition 1. Figure 5 shows activities of 

representative slow context units along with the vision (Kinect) inputs and the motor (proprioception) 

outputs in different test trials.  

 

 

 

 

 

 

 

 

 



 
Figure 5. Three examples of test trial results in (a), (b) and (c), plotted with the slow context units 
activity. ݔ௩,௧, ݕ௣,௧, and ܿ௦,௧ indicate the vision (Kinect) inputs, the motor (proprioception) output and 
the slow context units activity. 
 

Figure 5 (a) and Figure 5 (b) shows a situation of two test trials that the same movement primitive 

sequence was demonstrated until the 2nd primitive and different primitives were demonstrated for the 

third primitive. It can be seen that the slow context unit activities in these two trials were the same 

before the third movement primitive was demonstrated and they developed differently after different 

movement primitives were demonstrated for the third primitive. The similar observation can be made 



by comparing Figure 5 (b) and Figure 5 (c) where the slow context activities became different after 

different order commands were demonstrated. This implies that the slow context activity represents 

the current context by integrating the gesture sequence patterns perceived in the past. Therefore 

different context activities are developed at the end of the demonstration phase which represent the 

intention of the human subject expressed by combination of imperative gesture patterns. This 

integrated activity in the slow context units triggers generation of the corresponding motor primitive 

sequences. 

 Figure 6 illustrates activity of the representative fast context units, along with the vision 

(Kinect) inputs and the motor (proprioception) outputs in different test trials.  

 
Figure 6. Two examples of the test trial results in (a) and (b), plotted with the fast context activities. 
 ௣,௧, and ௙ܿ,௧ indicate the vision (Kinect) inputs, the motor (proprioception) outputs and the fastݕ ,௩,௧ݔ
context units activity.  
 

It can be seen that the fast context unit dynamics develops quite differently from the slow one by 

seeing two trial cases shown in this figure. It can be seen that the profiles of the fast context unit 

activity become quite similar when perceiving the same movement primitives or generating the same 



motor primitives in these trials. It can be said that the fast context unit activity develops in terms of 

one to one mapping from the current on-going perception or the motor generation. 

To provide more statistical evidence in a quantitative manner, the overall behavior of the 

network was analyzed as follows. For each of the training conditions 1 and 2, variances in the 

changes of the internal states of the context units in both fast and slow dynamics subnetworks in the 

Case-A, after encountering all slightly different movement primitive patterns belonging to the same 

category of movement primitive and in the Case-B, after encountering all completely different 

movement primitive patterns belonging to different category of movement primitive are computed. 

After that, the rates of the variances on these two cases (the variance in the context activation 

changes in the Case-B divided by the one in the Case-A) are computed for fast and slow dynamics 

subnetworks in each training condition. For both training conditions 1 and 2, the average rates 

measured in slow context dynamics subnetwork were 18.25 and 25.71, respectively. For both training 

conditions, the rates were measured in fast context dynamics subnetwork were 1.10 and 1.08. For 

both training conditions, the context units in the slow dynamics subnetwork showed much larger 

variance upon the introduction of different category of movement patterns compared to encountering 

the same category of movement patterns. In contrast to the slow context units, the fast context units 

showed quite small variance. This result is analogous to the aforementioned interpretation that the 

slow dynamics subnetwork represents the current context by integrating patterns perceived for long 

period, fast one develops in terms of one-to-one mapping from the current on-going perception, or the 

motor generation. 

To the sum, it can be said that the slow dynamics subnetwork is successful in extracting 

longer time correlated structures such as semantic rules from observed perceptual sequences. The 

first dynamics subnetwork, on the other hand, involves with processing detail features of on-going 

perceptual or motor primitive patterns. These observations are analogous to the previous experiment 

results reported by Yamashita and Tani (Yamashita & Tani, 2008) which indicated that MTRNN can 

develop functional hierarchy for generating complex motor behaviors in which the fast dynamics 

subnetwork encodes each motor primitive patterns and the slow dynamics subnetwork does for 

concatenation of them. The current experiment results, however, show furthermore that the adopted 

MTRNN model can recognize the intention of the human partner by extracting complex semantic rules 

latent in the stream of demonstrated patterns. 



4.2.2 Experiment 2-2: Importance of the topological connectivity among 

subnetworks and multiple timescales property 

The results of Experiment 2-1 implied that subnetworks assigned with different timescale dynamics 

develop different functions necessary to achieve the adopted task. The current subsection explores 

how configuration of the network including the topological connectivity among subnetworks and the 

multiple timescale structures assigned to subnetworks can affect the task performance. For this 

purpose, we conducted the following set of the learning experiment by employing the same task 

setting shown in Experiment 2-1.  

The first set of experiments examined the condition of allocating four different subnetworks 

consisting of alternating the time constants and number of context units of the slow context dynamics 

subnetwork. Ten different network settings were tested. In the case of the first five settings, five 

different time constants were assigned to the slow context units, 20, 40, 60, 80 and 100, while the 

time constants of other context units were fixed as the same time constants used in Experiment 2-1. 

As the time constant of the slow context unit increased, the time constant differences between the 

slow dynamics subnetwork and other subnetworks increased. This difference is interpreted as the 

multiple time scale property is enhanced. In the case of the other five settings, five different amounts 

of slow context units were assigned: 20, 40, 60, 80 and 100. For both cases, the remaining network 

hyper-parameters were the same as the network used in Experiment 2-1. The second set of 

experiments examined the condition of allocating only a single subnetwork with alternating the time 

constants and number of slow context units. It should be noted that the second set of experiments 

were conducted under the same condition as the first set, with difference only in the topological 

connectivity of the network. All neural units assigned with different time constants were fully 

connected in a single subnetwork. The results of the task performances for untrained test cases after 

the network being trained on the aforementioned different network settings are summarized in Figure 

7. 

 

 

 

 



 
Figure 7. Success rates for test trials with the network on different network configurations of multiple 
subnetworks and single one: a) with different time constants of the slow contexts and b) with different 
numbers of the slow context condition. Error bar indicates the degree of standard deviation. 

 

Figure 7 demonstrates that the network consisting of multiple subnetworks outperforms the 

network consisting of only a single subnetwork. As can be seen in Figure 7 (a), for both networks 

consisting of single and multiple subnetworks, the networks with large time constants of the slow 

context units as compared to other context units and with a distinctive multiple timescale property 

performed better than others. Although the networks showed sensitivity to the parameters, such as to 

the number of slow context units that can be related to the overfitting problem, as shown in Figure 7 

(b), the best performance for the generalization test was obtained in the case of adopting multiple 

subnetworks configuration with distinctive multiple time scales property among the subnetworks. 

These results imply that both topological connectivity among subnetworks and multiple timescales 

property are essential in development of required functional hierarchy with generalization. These 

observations are analogous to the prior research results that multiple timescale property adequately 

set in multiple subnetworks can result in better organization of functional hierarchy (Yamashita & Tani, 

2008) and also that the bottleneck connectivity between the higher level and the lower one is 

beneficial in development of adequate functional segregation between different levels (Paine & Tani, 

2005). (Experimental results that compared the performance of the 4 different network configurations, 

(1) multiple subnetworks and multiple time constants, (2) multiple subnetworks with a single time 

constant, (3) single subnetwork with multiple time constants, and (4) single subnetwork with a single 



time constant, can be found in (Park & Tani, 2015)) 

 

4.3 Experiment 3: Development of cognitive capability of controlling 

the contextual memory 

In the previous experiment, each session was performed independently as terminated after the robot 

response phase. However, it might be more natural if the session iterates continuously without 

termination. This, however, brings another technical challenge that how the robot can segment task 

sequence into each session without receiving explicit cues of indicating onset or end of the session. In 

the iterated session case, the network should be able to keep the activity of context units to develop 

while receiving the sequences of gesture movement primitives. When the gesture demonstration is 

finished, the network should be able to trigger the turn taking for generating own motor response.  

When the motor response is finished, the context states should be reset for preparing for next session 

to be started. This sort of task process requires the network to acquire a certain cognitive mechanism 

for controlling the contextual memory both for preserving or resetting it as situated to the on-going 

task processes. 

How can the network acquire such a sophisticated mechanism involving with a control of the 

contextual memory? We assumed that such contextual control mechanism could be developed if the 

network is tutored for longer iterations of the sessions. In order to test this assumption, we conducted 

learning experiment in which the network was trained with 26 trials each of which consists of 9 

continued sessions. The experiment task adopted a simplified form of imperative gesture consisting of 

3 concatenated movement primitives (12 different primitive sequences were arbitrarily selected), 

followed by a forward order command and 3 different speed commands. All of the possible 36 gesture 

sequences were included in the training.  

After the training the network under the aforementioned conditions, the performance of the 

robot response was examined by proceeding 36 continued sessions in which the gesture sequence 

was randomly selected from 36 possible gesture sequences at each session. The test results showed 

that the robot performed with the success rate of 84.4%. This result was compared with the condition 

of training with the single session condition where 36 different single session tutoring with different 

gesture sequence for each was conducted for training the network. After training with the single 



session condition was completed, the robot performance was tested while the session was iterated for 

36 times continued sessions. It turned out that the success rate of the robot response dropped down 

less than 10% after the 2nd session although the success rate in the first session was more than 90%. 

These results imply that the robot can perform successfully for continuing sessions when the network 

has been trained under the same condition of continued sessions. 

For the purpose of investigating the mechanism developed via training with continued 

sessions, we examined the time development of the slow context unit activity observed during the 

iterations of sessions in the test trials. Figure 8 shows examples of two different test trials for 

continued sessions with showing the human imperative gesture patterns at the top row, the robot 

motor response patterns at the middle row and the slow context activity in the bottom row. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 8. Two examples of test trial results during iterative cycles of sessions plotted with slow 
context activities. ݔ௩,௧, ݕ௣,௧, and ܿ௦,௧ indicate vision input, proprioception output and fast context. Two 
solid line rectangles and two dashed line rectangles indicate portions of the same imperative gestures. 
At each end of session, the context activity becomes similar as pointed by red arrows of “neutralized 
context”. 
 

It can be seen that the slow context activation profile became quite similar when the same 

imperative gestures were demonstrated regardless of the task content in the previous session (see 

the context activity profiles in two solid line rectangles for the same category of imperative gesture 

and in two dashed line rectangles for another same category of imperative gesture). We observed that 

this finding repeated in the same manner for all other imperative gesture cases. Furthermore, we 

examined the values of the slow context activity at the end of each session. It was found that the 

context activity took quite similar values as seen in Figure 8 as indicated by red arrows of “neutralized 

context”. It looks like as if the slow context activity were reset to a neutral value immediately before 



the onset of every new session.  

In order to confirm the aforementioned observation more quantitatively, variances of the 

internal state of the slow context units at the end of session among all different sessions were 

computed for the two conditions of training with a single session and 9 continued sessions. It turned 

out that the variances were obtained as 0.42 for the condition of training with single session and 

0.0645 for the condition of training with 9 continued sessions. 

To provide further statistical evidence, in each of the two training conditions, variances in the 

changes of the internal states of the context units in slow dynamics subnetworks in the Case-A, after 

encountering all slightly different gesture patterns belonging to the same category of gesture and in 

the Case-B, after encountering all completely different gesture patterns belonging to different category 

of gesture are computed. The same analysis method, adopted in Experiment 2 for analyzing the 

behaviors of the network dynamics, was used to examine the variances in changes of slow context 

units being compared for the two different cases (the variance in changes of the internal states of the 

context units in the Case-B divided by the one in the Case-A). For the two training conditions, when 

training with a single session and 9 continued sessions, the average rates of the variances upon 

encountering different category of gesture patterns and encountering the same ones were 1.11 and 

2.17, respectively. The variance in changes of internal state of slow context units in the Case-A, after 

encountering all slightly different gesture patterns belonging to the same category of gesture were 

much smaller than the variance when in the Case-B, after encountering all completely different 

gesture patterns belonging to different category of gesture in the condition of training with 9 continued 

sessions. On the contrary, such variances in the two different cases were almost the same in the 

condition of training with a single session. This result means that the network was not able to 

categorize the gestures in the condition of training with a single session resulted in poor performance 

of the network. 

The network trained with multiple sessions was able to correctly categorize the gestures, and 

successfully performed the continuously iterative task sessions by developing a cognitive capability of 

resetting the task session memory at the end of each session. However, because the network trained 

with a single session was not able to reset the task session context memory at the end of each task 

session, the network could not correctly categorize gestures in next continued session and therefore 

exhibited poor performance. Considering these results, it can be said that resetting the context states 



was important to perform the continuously iterative task sessions. In conclusion, these results indicate 

that the mechanism for autonomous resetting of the context states at the end of each session can be 

developed provided that the network is trained using relatively long iterative cycles of sessions. 

 

5. Discussion 
 
The current experimental study demonstrated that a humanoid robot controlled by a dynamic neural 

network model can generate corresponding sequential combinations of motor primitive patterns as 

responses to observation of various sequential combinations of gesture patterns demonstrated by the 

human subjects as the consequence of iterative tutoring. It was examined how the adopted MTRNN 

model can achieve this type of development by learning through continuous flow of the perceptual 

experience obtained during the tutoring. The experimental results revealed that the MTRNN can 

achieve generalization by learning in both of the lower perception level for robust recognition against 

variation in the perceptual features and the cognitive level involving with extraction of compositional 

semantic rules only by using partial training exemplar. It was also observed that the MTRNN can 

develop another type of cognitive capability for adaptive control of the contextual memory such as 

preserving it or resetting it as situated to the on-going task process. Our analysis on the experiment 

results indicated that such cognitive competency ranging from the lower perceptual level to the 

cognitive level can be developed depending on the network configuration such as the multiple 

timescale structure and the topological connectivity assigned to a set of subnetworks in the whole 

network model. 

 One possible contribution of the current study to the system level neuroscience might be the 

finding that a network configuration comprised of a set of locally connected subnetworks assigned 

with multiple timescale property is essential for development of hierarchically organized cognitive 

functions. Recently, the sizeable amount of human brain imaging data that has been gathered to date 

has enabled a global map to be created of both static connectivity and dynamic connectivity between 

all the different cortical areas (Sporn, 2010). Many studies have speculated that the essential 

cognitive functions might be largely determined by such connectivity among local brain areas and 

intrinsic neuronal dynamics in these local areas. Kiebel et al. (Kiebel, Daunizeau, & Friston, 2008), 

Badre and D’Esposito (Badre & D'Esposito, 2009), and Uddén and Bahlmann (Uddén & Bahlmann, 



2012) proposed an idea to explain the rostral-caudal gradient of timescale differences by assuming 

slower dynamics at the rostral side (PFC) including the Frontal Pole and faster dynamics at the caudal 

side (M1) in the frontal cortex to account for a possible functional hierarchy in the region. Related to 

this proposal, Soon and colleagues (Soon, Brass, Heinze, & Haynes, 2008) demonstrated that 

intention for free action is developed in the Frontal Pole accompanied by relatively slow built-up of 

readiness potential in human fMRI imaging experiments. This idea of the rostral-caudal gradient of 

timescale differences can be supported by the current results from the synthetic neurorobotics study 

showing that the hierarchical cognitive mechanism spanning from the lower perceptual competency to 

the cognitive competency, which is characterized by systematicity and the capability of controlling 

contextual memory, can be developed more effectively by utilizing the timescale difference among 

multiple levels of subnetworks, as well as the local connectivity allowed between adjacent levels of 

subnetworks.     

The observed mechanism of controlling the contextual memory is related to the one reported 

in the modeling studies for the Wisconsin Card Sorting Test (WCST) conducted by Rougier and 

O’Reilly (Rougier & O’Reilly, 2002) and Maniadakis et al. (Maniadakis, Trahanias, & Tani, 2012). 

Rougier and O’Reilly (Rougier & O’Reilly, 2002) proposed an adaptive gating operation scheme which 

can be trained to act on working memory for storing the currently adopted rules in WCST. In this 

model the neural activation patterns representing the current rules in the working memory can be 

preserved by closing the gate until the rules are in conflict with the new rule selected by the 

experimenter. Maniadakis and colleagues (Maniadakis et al., 2012) showed that a simpler continuous-

time recurrent neural network (CTRNN) can reconstruct the same mechanism by applying genetic 

algorithm to CTRNN. It was shown that the current rule can be preserved in slowly changing internal 

neuron states which can be reset by events of encountering the conflict. 

 It is interesting to compare the current scheme of not utilizing the prediction error explicitly for 

recognizing others’ intentions such as latent in imperative gesture and the predictive coding scheme 

(Ito & Tani, 2004; Murata et al., 2014) of explicitly utilizing it. It can be said that the intention of the 

other can be recognized unconsciously in the former model and consciously in the latter model if it is 

assumed that such consciousness originates from prediction error by following the thoughts (Tani, 

1998, 2009). It has been known that imitation is performed for both meaningless movement without 

objects and meaningful motor acts with target objects. Rizzolatti and colleagues (Rizzolatti, Fogassi, 



& Gallese, 2001) observed in their monkey experiments that mirror neurons in the parietal lobe and 

F5 fire in the former and the latter case, respectively. They consider that conscious imitation of 

meaningful motor acts – i.e. motor actions performed to reach a target object, may be accompanied 

by the firing of mirror neurons in F5. Furthermore, unconscious imitation without meaning can be 

observed in human neonates, while conscious imitation with meaning can be observed in infants after 

2 years old. Meltzoff (Meltzoff, 2005) explained the development of imitation mechanism by proposing 

a hypothesis on a “like me” mechanism which connects the perceptions of others as “like me” and 

understanding of others’ minds. In the first stage in newborn, innate sensory-motor mapping can 

generate the aforementioned imitative behaviors by means of automatic response. In the second 

stage, infants develop an interdependent relationship between their mental state and performed 

actions through repetition, which thereby affords learning. Finally in the third stage, infants come to 

understand that others who act “like me” have mental states “like me”. From these accounts, it can be 

said that the current model explains an unconscious pathway for communicable congruent responses. 

The current model could be developed toward conscious goal-directed one if incorporated with an 

error regression scheme for inferring the intention of others. However, implementation of the error 

regression scheme to neural network models requires additional artificial setting to models such as 

fixed length temporal windows as described in the previous section. The future study should 

investigate how these two different mechanisms for recognition of others’ can be arbitrated in a simple 

network model.  

 One major drawback of the current study is that the adopted communicably congruent 

responses of robots are limited to the experiment setting in the closed laboratory environment. For 

realizing truly open-ended social human-robot interactions in more natural settings, the current tasks 

of one-way imperative communication from human to robot should be replaced by mutual 

communicable congruence tasks between the two sides. Another limitation in the current study is that 

communicative rules to be learned by robots were predetermined by the experimenter. The 

communicative rules should emerge or adaptively change through mutual interactions as necessary in 

real social communication situations. In other words, the communicative rules should be invented or 

modified depending on the outcome of the on-going interaction for the purpose of gaining utilities in 

both robot and human sides or achieving shared goals between them. This requires furthermore 

consideration in the models and the task setting as described in the following. 



 First of all, it would be more natural if robots and human can develop communicative 

protocols and rules from simple one to complex one in the course of lone term interaction. For 

realizing this type of developmental learning, the current learning scheme on the network model 

should be improved such that it can cope with incremental or dynamic learning rather than the off-line 

batch learning scheme employed in the current model. Although there have been some trials on 

developmental or incremental learning with using dynamic neural network models (Nishimoto & Tani, 

2003), furthermore intensive investigation of the scheme might be necessary in order to assure both 

of the stability and flexibility in such dynamic learning.  

 Another important issue is about the capability on generalization by learning of the network 

model. The current study showed that the MTRNN model can exhibit generalization capability in some 

extents, for example, more than 95% motor response accuracy can be attained if 2/3 of all possible 

combination pairs between the gesture patterns and the motor response patterns are trained, as 

shown in the experiment 2-1. However, the fact that generalization achieved by training with 2/3 of all 

possible combinations may not be acceptable in the case of dynamic learning of communicative rules 

via mutual interactions because the amount of communicative interaction experience which can be 

utilized for learning at each dynamically changing situation is quite limited.  

 One possible remedy might be to consider that communication with linguistic complexity may 

not develop substantially especially in the early phase of communicative interactions. This would 

make sense because the linguistic complexity in the early stage of verbal communication of infants is 

quite limited although their communicative interactions with caregivers are known to be quite complex 

by using other modalities of communication channels such as emotion expression (Nadel, 2002). In 

this aspect, Asada proposed so-called affective developmental robotics (Asada, 2014) in which he 

assumed that multiple stages of emotional development observed in human infants should play 

crucial roles also in development of social communications between robots and human. Future study 

should focus on building of both psychologically and neurobiologically plausible models which can 

account for possible interactions between development of emotional communication and that of 

language-like communication characterized by systematicity. The success of such study should 

contribute significantly to the realization of truly open-ended human-robot social interaction. 

 



Conclusion 

The current study investigated how robots controlled by a particular dynamic neural network model 

can perform communicably congruent tasks, which are comprised of a set of human gesture patterns 

and corresponding robot motor responses, via tutoring by the experimenter. The experimental results 

showed that the MTRNN as an adopted model can achieve generalization by learning in the lower 

perception level for robust recognition against variation in the perceptual features such as speed and 

amplitude in the demonstrated gesture patterns by using only partial training data. It was shown that 

generalization can be achieved also at the cognitive level by extracting compositional semantic rules 

latent in the continuous perceptual patterns experienced during the tutoring. Furthermore, it was 

observed that the MTRNN can develop another type of cognition capability for controlling of the 

contextual memory such as for preserving the current context or resetting it as situated to the on-

going task process. It was discussed that the current study should be extended furthermore to include 

mutual communicative interaction as well as dynamic learning scenario for realizing more natural 

development of human-robots interactions. 

 

Acknowledgements 

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the 

Korea government (MSIP)(No.014R1A2A2A01005491) and by the Industrial Strategic Technology 

Development Program (10044009) funded by the Ministry of Trade, Industry and Energy (MOTIE, 

Korea).  

 

Appendix A. Adaptive learning rate algorithm 

In each epoch, the learning rate was updated using by the following algorithm (Namikawa, Nishimoto, 

& Tani, 2011). 

(1) Calculate the delta errors using randomly selected λ percent of the training sequences. 

(2) Calculate the rate (ݎ ) of the KL-divergence before updating parameters, and the KL-

divergence after updating the parameters using whole training sequences. 

(3) If ݎ ൐ 	  .ௗ௘௖ and go back to (2)ߙߙ to ߙ ௧௛, then updateݎ



(4) If ݎ ൏ 	1, then update ߙ to ߙߙ௜௡௖ and go to the next epoch. 

In this study, we set ݎ௧௛ to 1.1, ߙௗ௘௖ to 0.7, and ߙ௜௡௖ to 1.2 based on the parameter setting used by 

Namikawa (Namikawa et al., 2011).  

In each iteration of the training process, by calculating the gradient of the parameter using a 

only selected λ percent of the training sequences and determining the learning rate based on the ݎ 

over entire set of training sequences, i.e. constraining the network to minimize prediction error of the 

entirety of training sequences, not just attempt to minimize error of the only the selected sequences 

when updating its parameters, we could reduce the over-fitting problem. In other words, we could 

improve the generalization capability of the network. Adjusting the learning rate by only utilizing the 

training error, however, has a limitation in improving the generalization capability of the network. 

Because the network encounters only training sequences, it would extract the rules that only 

applicable to the minimization of error on training sequences, i.e. it would become fatally become 

over-fitted to the training sequences, as training proceeded, and error on test one would start to 

increase. 

In this context, the training data set were divided into two groups. One group consisted of the 

sequences used for calculating the delta error and adjusting the learning rate. Another group 

consisted of the sequences that were concerned with only adjusting the learning rate and used as the 

validation data set. By also considering minimization error on the validation data set in updating the 

learning rate, the network would be able to indirectly sense the existence of the external “world.” That 

is because it would encourage the network to acquire skills and extract rules that are generally 

applicable to the external “world” rather than acquiring specific skills and extracting particular rules 

only be applicable to the its “world”. The concept of considering the validation error in adjusting the 

learning rate is similar to Duffner & Garcia’s (Duffner & Garcia, 2007) method. However, the validation 

data set in the current study included sequences that consisted of the inexperienced human gestures 

and robot responses, whereas the validation data in their work were only different from training 

patterns by noise. Consequently, the adaptive learning rate algorithm in this study, which considers 

validation errors when adjusting the learning rate, has more important meaning in general rule 

learning, because this algorithm can widen the network’s awareness of the world.  

 



Appendix B. Criteria of best training epoch 

The best epoch was selected after 300,000 epochs, while considering both training and validation 

errors, instead of stopping the training when the validation error starts to increase, because both 

training and validation errors fluctuated as training proceeded. The epoch that minimizes the following 

error function (Eq. B.1) was treated as the best epoch. : 

ܧ ൌ ௧௥ܧ ൅
௧ܰ௥

௩ܰ
௩  (B.1)ܧ

where, ܧ௧௥  and ܧ௩  are the training and validation errors, and 	 ௧ܰ௥  and ௩ܰ  are the numbers of 

training and validation data, respectively.  
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