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ABSTRACT

This paper reviews research in “predictive coding” that
ultimately provides a platform for tfesting competing
theses about specific dynamics inherent in consciousness
embodied in both biological and artfificial systems.

1 INTRODUCTION

We have been left with a big challenge, to articulate
consciousness and also to prove it in an artificial agent
against a biological standard. After infroducing Boltuc’s
h-consciousness in the last paper, we briefly reviewed
some salient neurology in order to sketch less of a standard
than a series of targets for artificial consciousness, “*most-
consciousness” and “myth-consciousness.” With these
targets on the horizon, we began reviewing the research
program pursued by Jun Tani and colleagues in the isolation
of the formal dynamics essential to either. In this paper,
we describe in detail Tani’s research program, in order to
make the clearest case for artificial consciousness in these
systems. In the next paper, the third in the series, we will
refurn to Boltuc’s natfuralistic non-reductionism in light of
the neurorobotics models infroduced (alongside some
others), and evaluate them more completely.

1.1 PREDICTIVE CODING

In this section, we will review a research program into
artificial consciousness that demonstrates the potential for
computational experiments to isolate the formal dynamics
of consciousness including the sense of time. Our focus is
on the capacity for agents like human beings to project and
to act towards possible futures by reflecting on the past.
Studies in biological cognition have set out this capacity in
terms of “predictive coding.”? With predictive coding, the
results of actions—common “experience”—are integrated
into an agent in terms of “prediction error.”

Prediction error informs the agent about how far from an
intfended target a prior action has led it, with the agent’s
implicit aim being the minimization of this error signal. That
said, minimization of error is not absolute. Optimizing for
long-term ends may result in a relative detachment from the
immediate perceptual reality, and conversely overt attention
on immediate rewards may result in mounting error over
the long run. Because predictive coding makes this form
of future-oriented proactive agency based on effortful past
regression possible within a mathematically embodied

agent, it offers a promising formal framework within which
the relationship between the subjective mind and the
objective world may be instantiated in an artificial agent.

Predictive coding is an important development in artificial
consciousness research in two important ways. One, it
provides a direct way to model subjective intention within
the objective world. And two, it provides an equally direct
way fo project back the reality of the objective world as
perceived by and as consequent on the actions of embodied
and embedded cognitive agents.’ The result is a fully
accessible dynamical mirror intfo the operations essential
to consciousness in more complex systems, a promise that
merely biological approaches to the study of consciousness
cannot match. Tani was the first to successfully instantiate
predictive coding in artificial agents, e.g., robots, in a
deterministic domain, i.e., where infended outcomes are
stable aftractors.* Alternatively, Friston explored Bayesian
predictive coding in a probabilistic domain and generalized
it under the name of the “free energy minimization
principle” (FEMP).*

In the next section, we will briefly review a dynamic neural
network model, the recurrent neural network (RNN),°
because it is a basic component of contemporary intelligent
systems, and central fo Tani’s deterministic dynamics which
is the subject of the subsequent section. This review should
serve as a primer on the dynamic system’s approach fo
embodied cognition. After reviewing Tani and colleagues’
formulation using RNN models, we will examine Bayesian
predictive coding as formulated by Friston and colleagues.

2. PREDICTIVE CODING IN DYNAMIC NEURAL
NETWORK MODELS

2.1 THE RNN MODEL

The essential characteristic of the RNN” is that it can generate
temporal sequence patterns as targets embedded in its
internal dynamic structure. It “learns” to imitate exemplar
sequence patterns, and when properly organized even
to creatively compose its own® by extracting underlying
regularity. An example of an RNN is shown in Figure 1.
This figure shows an RNN used in the predictive learning
scheme to be described later (section 2.2).

Figure 1. RNN model of
predictive learning with
teaching target. The
dotted line represents a
closed-loop copy from the
output to the input.

I Vis1:Target

An RNN consists of a set of neural units including inpuf
units representing the input state, intfernal (context) units
representing the internal state and output units representing
the output state. These are variously inferconnected by
synaptic connectivity weights. These connections can
be unidirectional, bidirectional, or recurrent. The time
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development of each neural unit oufput activation in
discrete time can be written as:

ufs= S wyal+bt (1)
ai=f(u)  (1-b)

Where # is the internal state of the ith neural unit at time
step t, at is its output activation, w, is synaptic connection
weight from the jth unit to the ith unit, b’ is the bias of
the ith unit. f() is a sigmoid function. Over time, the neural
activation of the whole network can generate different
types of dynamic attractor patterns depending on the
synaptic weights adopted in the network. Figure 2 shows
typical attractors including a fixed point attractor, a limit
cycle aftractor, a limit forus, and chaotic attractor.

Figure 2. Four different
types of attractors. (a) fixed w /;5 )
point attractor, (b) limit /\kj @:—J )
cycle aftractor, (c) limit &

torus characterized by ftwo

periodicities P1and P2 which (@) (b)

form an irrational fraction,
and (d) chaotic attractor.

The simplest attractor is a fixed point attractor in which all
dynamic states converge to a point (Fig. 2 (a)). The second
one is a limit cycle attractor (Fig. 2 (b)) in which the trajectory
converges to a cyclic oscillation pattern with constant
periodicity. The third one is a limit torus that appears when
there is more than one frequency involved in the periodic
trajectory of the system and two of these frequencies form
an irrational fraction. In this case, the trajectory is no longer
closed and it exhibits quasi-periodicity (Fig. 2(c)). The fourth
one is a chaotic attractor in which the trajectory exhibits
infinite periodicity and thereby forms fractal structures

(Fig. 2 (d)).

These different types of attractor dynamics can account
for the autonomous generation of different types of agent
action patfterns. For example, fixed point attractor dynamics
account for a hand reaching movement, from an arbifrary
hand posture fo its end point, while limit cycle aftractor
dynamics account for a rhythmical hand waiving pattern
with a certain periodicity, and chaotic attractor dynamics
account for non-periodic, seemingly random movement.

RNNs can learn to generate such attractor dynamics through
predictive learning. Each specific attractor pattern can be
developed in an RNN by optimizing the synaptic weights
and biases through a process of error minimization. In
predictive learning, the network receives current fime step
perceptual input and outputs a prediction of the next time
step (see Fig.1). Error is computed between the predicted
output and the target (e.g., teaching exemplar), and
synaptic weights and biases are updated in the direction of
minimizing this error using error back-propagation through
time (BPTT).” After learning, the RNNs internal dynamics
converge on a stable pattern, and the learned attractor can
be generated from a given initial state through “closed-
loop” (off-line) operation in which the predicted output of

the current time step is copied to the input of the next time
step in a closed-loop (see the dotted line in Fig.1). This
closed-loop operation corresponds to mental simulation,
as will be described later sections.

An RNN can be regarded as a dynamical system with
adaptive parameters including synaptic weights and biases
which can be described in the following generalized form

x,,, = F(x,, w) (2a)
yr+1 = G(XHV W) (2b)

In these expressions, x, and y, represent the current
internal state and the output state, respectively, and w
stands for the adaptive parameter. The internal state x, is
important, because it represents the current context or
sifuation for the system as a whole and develops by means
of an iterative learning process. The system can exhibit
contextual information processing through which the
output of the system reflects not merely the immediately
perceived inputs but the conftext accumulated over past
experiences of inputfs. Formally speaking, this system
embodies temporality, entrained according to patterns that
extend beyond the immediate context and, as we shall see,
reaches—even creatively, and inferentially—toward goal
states.

The conventional RNN model can learn to generate only a
single atfractor pattern except special cases of developing
multiple attractors. So, a natural question arises: How can
the model be advanced such that it can learn to generate
multiple aftractor patterns, each specific to a different
context? This question motivated an investigation into the
possibility of applying the framework of predictive coding
in the advancement of RNN models, as described next.

2.2 MIXRNNS AND RNNPB

Tani and colleagues investigated how a nefwork model
can retrieve and generate a particular sequential pattern
from long-term memory of multiple patterns. Two versions
of RNN models resulted, namely a mixture of RNN experts
(MiXRNNs)'?and a recurrent neural network with parametric
bias (RNNPB)."" MixRNNs use a local representation scheme,
and RNNPBs use a distributed representation scheme, in
order to learn to generate and fo recognize sequences
of primitive action patterns. Moreover, these movement
patterns are temporal patterns requiring active self-
entrainment through online information by another’s live
and more-or-less similarly embodied example, recalling the
mechanism of “mirror neurons.”'? In this section, we look
more closely at how the MixRNN and the RNNPB capture
aspects of consciousness typically associated with more
complex biological systems.

MIiXRNNs'® consist of sets of local RNNs internally associated
through gates where the global output of the whole
network model is computed as the weighted sum of the
gate opening ratio for all local RNN outputs (see Figure 3).

During learning, local RNNs compete to predict the next
perceptual state as the gate opens most for the local RNN
with the least prediction error. Because the learning rate of
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Figure 3. Description of MixRNNs. (a) Generation mode (b)
recognition mode, and (c) segmentation of perceptual flow
into a sequence of chunked sub-patterns by inferencing gate
openings.

each RNN is proportional to the gate opening ratio, the
more that the gate of a particular RNN opens, the more this
local RNN is able to learn the current perceptual sequence
pattern. The goal of learning is to obtain optimal synaptic
weights for all modular RNNs as well as optimal openings of
the all gates at each time step, and by “optimal” we mean
those which minimize the reconstruction error between the
global output and the target output.’ Through a competitive
learning process, i.e., error regression fraining with BPTT
for the optimal gate opening sequence between RNNs, as
well as for optimal synaptic weights in

When the currently perceived sequential pafttern changes,
gate opening is shifted foward minimizing prediction error
arising at this moment. An important point here is that the
continuous perceptual flow is segmented into chunks by
means of gate openings during these moments. Tani and
Nolfi argue that this suddenly required effort for minimizing
the error by inferring appropriate gate openings should
accompany momentary consciousness.’” Next, we look at
a further advance on RNNs in this direction, the recurrent
neural network with parametric bias, or RNNPB.

The RNNPB'® is a single RNN model employing parametric
bias (PB) units (see Figure 4).

PB represents the current intention as it projects a particular
perceptual sequential pattern onto the external world,
analogous fo the gate dynamics in MixRNNs. PB does this
job by playing the role of bifurcation parameter modulating
the dynamical structure of the RNN.

In simple terms, an RNNPB learns to predict or generate
a set of perceptual sequence patterns associated with
corresponding PB vectorvalues. During learning, the optimal
synaptic weights for all different sequence patterns as well
as the optimal PB vector value for each sequence pattern
can be obtained. Affer learning, an RNNPB can generate a
learned perceptual sequence pattern by adopting the PB
with the corresponding vector value (Fig. 4(a)). It can also
recognize a perceptual sequence patftern given as a target
by inferring the optimal PB vector by way of which the

target sequence can be reconstructed

all local RNNs, each local RNN becomes
an expert for a particular perceptual
sequence pattern. Intuitively then,
MiXRNNs can learn a set of frequently
apparent primitive patterns with each
consolidated in a corresponding local
RNN simply through the iterative and
collective experience of those patterns.

Set PB values

After learning, a MIixRNN model
can generate a particular intended
perceptual sequence by opening the @
gate of the corresponding RNN expert
(Fig. 3(a)). In this way, current gate
openings represent the current top-
down infention designating the pattern
to be generated. Additionally, MixRNNs

PB value modified

prediction error

and output with the minimum error
$Regressim (Flg.. 4(b)). Fig. 4(c) shows how the
& continuous perceptual stream can be

segmented into a sequence of prior-
5\ learned patterns in terms of attractor
dynamics by fracking modulations in PB
N vector bifurcation parameters at each

J time step.
*R‘;‘;;nstmd In the end, switching between chunks
*Vm in the RNNPB is analogous fo the
®) Tamet segmentation mechanism employed
in MixRNNs which use gates between
local RNNs to recruit the appropriate
expert or combination of experts given
immediate perceptual reality. One
limitation common to both is that each

can recognize a given perceptual
sequence pattern through competition
between local RNNs by reconstructing
the target pattern with the least error by
means of the error regression scheme
optimizing the gate openings (Fig. 3
(b), with synaptic weights fixed in this

Perceptual state

PB

Time Steps
(c)

Figure 4. Description of RNNPB. (a)
Generation mode, (b) recognition mode,
and (c) segmentation of perceptual flow
by PB vector info chunked patterns.

consists of a single level. Buf, when
they are organized into a hierarchy,
they can exhibit higher-order cognitive
competencies such as creative
compositionality.

Such an extension is the subject of the

case). When error is minimal, a gate

associated with a partficular local RNN

opens in a winner-take-all manner, and the target pattern
is recognized as belonging to this expert RNN. In other
words, the target pattern of the current perception can be
recognized by means of reconstructing it in a particular
local RNN with minimum error whereby the current gate
opening states represent the inferred intention.

next section.

2.3 FUNCTIONAL HIERARCHY IN THE MTRNN

Both MixRNNs and the RNNPB have been developed
info multiple-level architectures.'”” The basic idea is that
higher levels attempt to control lower levels by projecting
confrol parameters (such as gate openings or PB vector
modulations) onto lower levels based on current higher
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order intention. And in furn, during normal operation the
prediction error generated against the perceptual reality
in the lower level is back-propagated to the higher level,
where the confrol parameters for the lower level as well
as the inftention state in the higher level is adjusted in the
direction of minimizing the error, i.e., by conforming to that
state which would have resulted in least error.'®

Tani and Nolfi demonstrate that hierarchically organized
MIixRNNs can learn tfo generate and recognize a set of
sequential combinations of movement primitives in a
simulated indoor robot navigation space.”” The analysis
showed that a set of chunks related to movement primitives
such as furning to the right/left at a corner, going straight
along a corridor, and passing through a T-branch developed
in local lower level RNNs, while different sequential
combinations of these primitives developed in the higher-
level RNNs, e.g., fraveling through different rooms. When
the simulated robot, for example, turns left at a corner
from a straight corridor in a particular room, the contfinuous
perceptual flow of its range sensor is segmented into the
corresponding two movement primitives in the lower level.
On the other hand, when it fravels from a familiar room to
another, segmentation related to the room transition can
take a place in the higher level.

Tani achieved similar results in a real robotic arm with a
similarly hierarchically organized RNNPB, which was able
to deal with primitives and their sequential combinations
during a simple object manipulation task. It is important
to note that what begins as raw experience of the
continuous perceptual flow becomes a manipulable object
for the higher level after segmentation intfo chunks.
Thus, the hierarchical structure adopted by Tani enables
the objectification of perceptual experience, as will be
described in greater detail later.?°

Building on this work in hierarchically organized RNNs,
Yamashita and Tani?' demonstfrated the learning of
compositional action generation by a humanoid robot
employing a novel multiple timescale RNN (MTRNN)
(Figure 5). This MTRNN model uses multiple fimescale
constraints, with higher-level activity constrained by
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Figure 5. MTRNN model. (a) MTRNN architecture consisting
of 3 levels, and (b) its tfop-down compositional generation

of different infended actions.

slower timescale dynamics, and with lower level activity
proceeding according fo faster timescale dynamics. The
basic idea is that higher-level information processing
becomes more abstract as constrained by its slower
dynamics, whereas lower level information processing
is more sensitive to immediate details as constfrained by
faster dynamics.

The MTRNN shown in Fig. 5(a) consists of 3 subnetworks
(slow, intermediate, fast dynamics networks; note that the
numbers of levels can vary depending on application) each
consisting of leaky integrator neural units that are assigned
different time constants. The activation dynamics of a
leaky integrator neuron can be described as a differential
equation:

T O+ sy (30)

O 1/ 0+ D @0

where trepresents the time constant of the neuron. When
Tis set with a larger value, the time development of the
neural activation becomes slower. With a smaller value,
it becomes faster. Eq.3 is integrated over time using the
difference method. The fast dynamics network in the lower
level consists of two modular RNNs, one for predicting the
proprioceptive state in the next step from current joint angle
information, and the other for predicting low dimensional
visual features in the next time step from current visual
information.

During these humanoid robot learning experiments, the
MTRNN was trained to generate a set of different visuo-
proprioceptive trajectories corresponding fo supervised
targets by optimizing connectivity weights as well as
the infention state corresponding to each trajectory. The
intention state here is analogous to the PB value in the
RNNPB, and corresponds with the initial states of neural
units in the slow dynamics network of the MTRNN (see Fig.
5(a)). When learning begins, for each training sequence the
initial state of the intenfion units is set fo a small random
value. The forward top-down dynamics initiated with this
temporarily setinitial state generates a predictive sequence.
The error generated between the training sequence and
the ouftput sequence is back-propagated along the bottom-
up path through the subnetworks with fast and moderate
dynamics to the subnetwork with slow dynamics. This
back-propagation is iterated backward through time steps
via recurrent connections, whereby the connection weights
within and between these subnetworks are modified in the
direction of minimizing the error signal (at each time step).
The error signal is also back-propagated through time steps
to the initial state of the intention units, where these initial
state values are modified.

Here, we see that learning proceeds through dense
interactions between the top-down regeneration of tfraining
sequences and the bottom-up regression through these
sequences by way of error signals, just as in the RNNPB.
And as a result of this interaction, the robot learns a set of
behavior primitive patterns such as reaching for an object,
liffing the object up and down, or moving it left and right.
These develop as disfributed activation patterns in fast
and intermediate dynamics networks while various control
sequences for manipulating these primitive constfructs
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develop in the slow dynamics network (according fo its
initial sensitivity characteristics, see Fig. 5 (b)).

What explains the success of these models in performing
such complex cognitive tasks? In the MTRNN, neural
activity ouftput from the higher level plays the role of
bifurcation parameter for the lower level, like the PB vector
in the RNNPB. Building from this work, Yamashita and
Tani concluded that the decomposition of complex visuo-
proprioceptive sequences info sequences of reusable
primitives is achieved within this functional hierarchy due
to subnetwork timescale differences.?” Further experiments
by Nishimoto and Tani and Arie and colleagues showed
that MTRNNs can not only generate actual movements, but
also diverse mental simulations of various intention states
by performing closed-loop look ahead (so-called “off-
line”) prediction.?* So, the question now becomes how to
understand such functional hierarchies.

The development of functional hierarchies is captured
in a well-known concept central to the study of complex
adaptive systems, “downward causatfion,” the causal
relationship from global to local parts of a system.*
A functional hierarchy develops by means of upward
causation in terms of collective neural activity, both in
forward activation dynamics and in error back-propagation.
In the other direction, this development is subject to
downward causation in terms of timescale difference,
network fopology, and environmental interaction. Note
that these are strictly deterministic features of the system.
Target conditions are determined. Current states are
determined, and thereby optimal sequences of action
are inferred. Next, we will look at an effort to articulate
these femporal dynamics nondeterministically, in Friston’s
Bayesian predictive coding scheme formulated according
to the free energy minimization principle.

3. THE FREE ENERGY MINIMIZATION PRINCIPLE
From the subjective perspective of an agent in the world,
phenomena may be better described probabilistically than
deterministically. Where upcoming anticipated optimal
condifions are not pre-determined or perhaps even pre-
determinable, the aforementioned models by Tani and
colleagues can be extended into the probabilistic domain,
as Friston has done.?”” Friston’s main idea is to predict the
next tfime step’s perceptual states in terms both of their
averages and their variances (or estimated accuracy). The
average is a value arrived at according to prior instances,
and actions undertaken on the basis of averages succeed
best when deviations from the average are minimal.
Variance, on the other hand, is a measure of the amount
of difference between instances, and so can represent the
accuracy of a prediction. Specifically, it can represent the
estimated accuracy of a prediction, as a form of second-
order prediction.?

Now, the exact formula for representing this idea is derived
from the principle of free energy minimization.?”” Negative
free energy F can be computed by the addition of Gibbs
energy G and Enfropy E:

F=G+E (4-a)

Then, F can be written in the following form.

F = EIOERR A CTCIERT SR

Where q(z) represents the prior distribution of the intention
state, P, (x, z) represents joing probability distribution of
observation x and the intention state Z parameterized
by parameter @ Then, negative free energy F can be
transformed as:

= EIECIED GG TN

CRIETE) ] — T
CohEIUETET) — [ERTEEN) + [FEREEr - EE
= (TS ] — CHHET | GETED)] (4-b)

The last form obtained in (4-b) is equal fo the lower bound,
L which is well known in the machine learning field. The
first term represents the likelihood of reconstructing X
by parameter 6 and the second term represents minus
KL divergence between the prior probability distribution
of the intention state and the posterior disfribution
after observation of X with parameter @ It can be seen
that maximizing the negative free energy is equal to
maximization of the lower bound. This lower bound L can
be rewritten as:

L= S /2(n(@Eh %ﬁ‘ﬁ% Sl /20659 + %) (4-c)

where o, is the ith dimension of the prediction output at
time step f in the sth sequence, cfm is ifs teaching target,
and v, is its estimated variance, /S is the ith dimension
of the intention state for the sth sequence, and §S is its
predefined deviation.

The generation, recognition, and learning of complex
action sequences are possible through the maximization of
negative free energy in the probabilistic domain just as the
minimization of error performs similarly in the deterministic
domain. According to the first ferm on the right-hand side
of equation (4-c), the likelihood part can be maximized if
variance is taken to be large even if the prediction square
error is large. In this case, the agent has no reliable guide
to anficipated future situations, so it simply relaxes any
expectation of oncoming events. This would correspond
with a reactive posture in a biological consciousness, for
example. On the other hand, the likelihood might be small
even though the prediction square error is small if the
estimated variance is smaller than reality. In this case, an
agent acts from intentions as if ends are predetermined,
e.g., as if he has plotted all the necessary dimensions
and their internal deviations so that action is facilitated
and success presumed guaranteed. Buf, the agent ends
up wrong about this, and suffers the correction. In human
experience, having failed to adequately account for the
world while having proceeded with laid plans in confidence
is called “surprise.” Similarly, according to Friston’s free
energy minimization principle (FEMP), the prediction
square error divided by estimated variance represents the
degree of surprise with interesting implications for inquiry
into consciousness. For one thing, the measure of surprise
may correlate with a measure of consciousness as the top-
down accommodation of perceptual inputs at each time
step.
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According to the second tferm on the right-hand side of Eq.
(4-c), the distance from the prior to the posterior can be
minimized when the intention state of each sequence is
distributed by following the Gaussian distribution with the
predefined deviation §,. The recognition of the intention
in FEMP is to infer the optimal probabilistic distribution of
the intention state for a given target sequence, maximizing
negative free energy rather than infer a single optimal
value minimizing the prediction error as in the RNNPB.
Instantiating such a process in a model dynamic system is
subject of the next section.

3.1 THE STOCHASTIC MTRNN MODEL
Because the original FEMP by Friston?® was not implemented
in any frainable neural network models, it was not clear how
maximizing negative free energy in Eq.(4-a) might lead to
successful learning of internal predictive models extracted
from perceptual sequence data experienced in reality.
For this reason, Murata and colleagues proposed a novel
dynamic neural network, referred to as the stochastic-MTRNN
(S-MTRNN) model.?” This model incorporates Friston’s (2010)
FEMP info the deferministic learning model described in
the last section, the MTRNN. The S- extends the original as
it earns to predict subsequent inputs taking into account
not only their means but also their “variances,” or range of
anticipated values. This means that if some segments of
input sequences are more variable than others, then the
time-dependent variances over these periods become larger.
On the other hand, if some parts are less fluctuated, their
variances are smaller. In effect, then, the S-MTRNN predicts
the predictability of its own prediction for each dimension
of the input sequences in a time-dependent manner. When
variances are estimated as zero, then the S-MTRNN becomes
a deterministic dynamic system like the original MTRNN,
e., it anticipates zero variance. Therefore, it can be said
that—depending on context—S-MTRNNs can develop either
deterministic or stochastic dynamics, at which point arises
the notion of probability and so some valuation of possible
future states accordingly.

The model operates by means of maximizing the negative
free energy described in Eq. (4) in all phases of learning,
recognizing, and generating perceptual sequence patterns.
An important development in the current model is that v,

as estimated variance in the likelihood part of Eq. (4-c) |s
changedto atime variable valuable v , because its estimate
can change at each time step of a percep’rual sequence. The
likelihood part exists to minimize the square error divided
by estimated variance at each step. This means that the
prediction error at a particular time step is pressured to
be minimized more strongly when its estimated variance
is smaller. Otherwise, the pressure fo minimize prediction
error is less.

Another development is that the intention state IS_, in the part
of KL divergence between the prior probability dls‘rnbuhon
of the intention state and the posterior distribution in Eq.
(4-c) is now represented by the initial states of context units
in all levels. The KL divergence part of Eq. (4-c) puts specific
probabilistic distribution constraints on optimal initial states
for all sequences with the parameter :ix. If @ is set with
a large value, the distribution of initial states becomes
wide. Otherwise, it becomes fight. By maximizing the

negative free energy during the learning process, optimal
connectivity weights for all teaching sequences, the
probability distribution of the initial state for each teaching
target sequence,’® and the estimates of time-dependent
variance for each sequence are obtained.

Figure 6 (a) shows the architecture of the S-MTRNN. The
difference from the original MTRNN is that the S-MTRNN
contains output units for predicting variances for all sensory
dimensions at each time step.
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Figure 6. S-MTRNN model and the robotic experiment with the
model. (a) The S-MTRNN contains additional output units for
predicting variances for all sensory dimensions at each time step.
(b) The “self-robot” learns to generate cooperative behaviors with
the “other-robot.”?'

The next section reviews how the S-MTRNN performs in a
particular robot task in the probabilistic domain.

3.2 LEARNING TO COOPERATE WITH OTHERS

A robotic experiment was conducted utilizing the S-MTRNN
described in the preceding section (see Fig. 6).*” The
objective of this robot experiment was to examine how one
robot can generate “cooperative” behavior by adapting
to another robot’s behavior, even though its predictions
occasionally fail. The experiment used two *“NAO” humanoid
robots. One NAO robot, the “self-robot,” attempted to
generate cooperative behaviors with the “other” NAO
robot. The other-robot’s behavior was pre-programmed.
The self-robot was controlled by the S-MTRNN model.

During the experiment, the other-robot repeated movement
patterns and the self-robot was tutored to generate
corresponding “cooperative” behaviors as it perceived
the other’s object movements. In order to do this, the self-
robot needed fo proactively initiate its own arm movement
before sensing the actual movement initiated by the other-
robot. The self-robot acquired this cooperative behavior
skill through direct futoring from the experimenter.** The
self-robot observed the other-robot perform sequences of
five movements, moving a colored object either to the left
or to the right in all possible combinations (2° sequences).
Then, the self-robot was required to generate cooperative
behaviors by simultaneously moving ifs arm in the same
direction as the other-robot. As it generated movements
and adjusted to the other-robot’s movements, differences
emerged in the dynamics involved in predicting as well as
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generating behavior between the two conditions of the
wide and narrow initial states. The following explains how
we tested these results in greater detail.

During the test phase of the experiment, the S-MTRNN was
trained with 2° visuo-proprioceptive (VP) sequences during
the tutoring process. This fraining was repeated twice,
once with a small value for & and then again with a large
value in order to generate a narrow initial state distribution
(Narrow-IS) and a wide initial state distribution (Wide-IS),
respectively. Other-robot object movement (either to the
left or to the right) was randomly determined from amongst
the same 2° sequences so that the self-robot (S-MTRNN)
would be unable fo predict next movements reliably.

After training, closed-loop generation of *mental” imagery
was performed for both wide and narrow fraining cases
(i.e., offline rehearsal). During closed-loop operation,
Gaussian noise corresponding to the estimated variance at
each step was applied to the feedback from the previous
step prediction output, and was input fo the current step
(see Figure 7 (a)).
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Figure 7. Generation of mental imagery via closed loop. (a) Closed-
loop generation by S-MTRNN, generated sequences (b) in Narrow-IS
case and (c) in Wide-IS case.™

In this way, mental imagery increasingly fluctuates as
uncertainty of a prediction, i.e., the estimated variance,
increases. In the example pictured in Fig. 7, the initial
states were set with the values obtained upon learning
the “RRLLR” trial sequence as performed by the other-
robot. Fig. 7 (b) and (c) illustrate mental imagery in terms
of prediction of VP sequences associated with estimated
variance and infernal neural activities in the fast and the
slow subnetworks as generated by the S-MTRNNs trained
under both Narrow-IS or Wide-IS conditions. In the Narrow-
IS case, diverse decision sequences were generated even
though all frials began from the same initial state. As the
figure shows, estimated variance sharply peaks at decision
points, but remains almost zero at other time steps. This
implies that during training the S-MTRNN develops action
primitives for moving left or right as fwo disfinct chunks,
and employs a probabilistic switching mechanism at
decision points.

On the other hand in the Wide-IS case, the same decision
sequence was repeatedly generated for the same given
initial state. Fig. 7 (c) shows that the VP sequence for
“RRLLR” was generated which seemed to be mostly the

same as the target VP sequence. Here, it is important
to note that the variance is estimated as almost zero for
all steps including at decision poinfs. This implies that
mental imagery is generated as a deterministic predictive
dynamics in the Wide-IS condition. Interestingly, for more
than 20 branching instances before finally converging to
cyclic branching, the robots’*mental imagery” (predictive
dynamics) of next-movements was generated pseudo-
randomly by means of transient chaos that developed in
the slow dynamics part in the model network. This resulf
is analogous to that of Namikawa et al., where complete
chaos (with a positive Lyapunov exponent) instead of
transient chaos appeared in the neural dynamics of an
MTRNN.?*

In the end, neural activity infernal to the Narrow-IS and Wide-
IS systems was quite different. In the Narrow-IS case, the
neural activities in both the slow and the fast subnetworks
showed the same values at all decision points. In the Wide-
IS case, slow and fast neurons exhibited different activation
patterns at each decision point through which the system
was able to attempt to predict the subsequent move, left or
right. There appears tfo be no such bias in activity at decision
points in the Narrow-IS case, whereas there are top-down
predictive biases imposed by specific top-level neural
activation patterns at decision points in the Wide-IS case.

Let’s look more closely at how the self-robot interacted
with the other robot using the network trained in these two
conditions, Wide-IS and Narrow-IS. Starting with arbitrary
initial states, S-MTRNN generated one-step predictions for
subsequent VP states upon perceiving current visual states
via open-loop generation, while the other robot randomly
moved a colored object sequences of five (see Figure 8 (a)).
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Figure 8. The results of the self-robot interacting with the other-
robot by open-loop generation. (a) The scheme of the open-loop
generation, (b) a sequence generated by the network trained with
the Narrow-IS condition and (c) with the Wide-IS condition.*¢

Fig. 8 (b) and (c) show the results of open loop processing
with the self-robot reacting to the ofher-robof as if
generated the “RRLR” sequence for the Narrow-IS and the
Wide-IS cases, respectively. Here, we observe that one-
step prediction of VP states in the Narrow-IS case is quite
successful, generating only a small error at each decision
point. In contrast, one-step prediction in the Wide-IS case
is much worse. In fact, the prediction error is significantly
large at many decision points. Interestingly, at this juncture
of the frials, the movement of the self-robot became erratic.
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For example, in the fourth decision as illustrated in Fig. 8
(c), the self-robot moved its arm in the direction opposite
to that of the other robot. And, although the self-robot
seemed to fry to follow the movements of the other-robot,
its movements were significantly delayed.

The difference observed between the Wide-IS and Narrow-
IS cases is best understood in terms of the different neural
dynamic sfructures developed in these cases. In the case
of the probabilistic dynamic structure developed in the
Narrow-1S case, the behavior of moving either to the left
or fo the right is determined simply by following the other-
robot by means of sensory reflex without any top-down
bias.’” In confrast, in the Wide-IS case, the top-down bias
of internal neural activity at decision points is too strong fto
be modified by sensory input and incorrect movements are
initiated and carried through.

3.3 INTRODUCING BOTTOM-UP ERROR
REGRESSION

Next, consider an experiment that examines the effects of
infroducing an additional mechanism of bottom-up error
regression into the learned neural dynamics during the
course of behavior generation. This is a modified model
which maximizes the likelihood LHreg for the time window
of the immediate past by modifying the neural activation
profile in this past window while fixing the connectivity
weights (Fig. 9 (a)) as shown in Eq. (5).

e 38 o 38 /200 (- fm%m@lﬁ% ®)

where the time window is defined from t-W to t at the
current time step and the activation states of the slow units
at time step t-W (which is the onset of the window) are
updated by back propagating the error signal generated.
This error regression in terms of updating the activation
state at the onset of the window and forward through the
window is iterated multiple epochs during each time step
in behavior generation. Again, as shown in Eq. 5, error back-
propagates more strongly when the estimated variance
(as the square error divided by the variance) is smaller.*®
An infuitive explanation is that in this scheme the internal
representation in the immediate past window is rewritten
for the sake of maximizing the likelihood for the ongoing
perception.

Fig. 9 (b) shows an example of developments during on-
line behavior generation in the trained Wide-IS network
using the present error regression scheme.

Clearly, neural activity in the gray area changes in a
discontinuous manner with the generation of a sharp peak
in prediction error only upon encountering unpredicted
action by the other even though this error was rapidly
reduced. Note that this sharp peak in prediction error is
larger than that generated during on-line prediction in
the case of the Narrow-IS as shown in Fig. 8 (b). In short,
modulating higher-level neural activity by using error
regression caused drastic changes in lower-level network
activity including sensory predictions, and in this way
prediction errors were rapidly minimized. Ultimately thus,
the self-robot was able to re-situate its behavioral context
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immediately after encountfering unpredictable events
through dense interactions between top-down intentional
prediction and bottom-up recognition of actual results.

How can we infterpret these experimental results? First,
let us summarize what we have just seen. In the Narrow-
IS condition, probabilistic network dynamics develop
generating actions in a sensory reflex manner. In contrast,
proactive behaviors pursuant from deterministic predictions
of next actions develop from the Wide-IS condition. It can
be said that the Narrow-IS condition develops only weak
top-down prior states while the Wide-IS condition develops
strong top-down prior states. During the interaction of the
self robot with the other robot, the self robot trained under
the Narrow-IS condition could easily follow the action
sequences arbitrarily determined by the otherrobot because
it simply reacted to sensory inputfs, with neural activity at
decision points. On the other hand in the Wide-IS condition,
the self-robot could not follow the action sequences of the
other robot according to sensory inputs, because the top-
down bias originating from the initial state was too strong.
However, when the error regression scheme was applied
utilizing the prediction error generated, the actions of the
Wide-IS self robot were modified immediately by means
of rapid changes in internal neural states. This bottom-up
modulation can be quite strong because the variance is
estimated as small in the case of the Wide-IS. This is due to
the development of a deterministic dynamic structure, one
that plans its next action, and that can be said to “have”
a future toward which it has effectively committed itself
through proactive cognitive agency given strong top-down
prior states. On the other hand, the same force is not so
strong in the probabilistic (Narrow-I1S) case because the
estimated variance at decision points is large. This is to say
that the Narrow-IS has plotted no future condition beyond
immediate reaction, and has thus cannot be said to “have”
a future in this same way.

Consider these Wide and Narrow conditions from the
Bayesian viewpoint. In the Bayesian framework, the S-MTRNN
represents a likelihood function which maps intention
state to a probability distribution of up-coming perceptual
states. In these experiments, the distribution of intention
states (initial states) was constrained by either the Wide
distribution or the Narrow distribution, and the experiments
show that the Wide distribution of intention states develops
a deterministic dynamics with strong top-down prior states,
whereas the Narrow distribution develops a probabilistic
process which is a purely reactive process.
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3.4 TIME PERCEPTION BY “EMBODIED” RNNS

Now, we come back the main issue of consciousness. This
section briefly looks at the problem of time perception in
light of Francisco Varela’s “present-time consciousness.”*°

Tani and Nolfi postulated that “consciousness” arises af the
very moment of segmenting the perceptual flow by means
of error regression.*' Varela’s “present-time consciousness”
arises similarly.*? First, Varela considered that the immediate
past does not belong fo a representational conscious
memory, but just fo an impression consistent with Husserl’s
idea of retention.”* So, his question was how the immediate
past, experienced just as an impression, could slip into a
distant past which can be retrieved through a conscious
memory operation later on. And, in response, he proposed
that nonlinear dynamics theory could be used as the
formal descriptive tool for this phenomenon. By using the
phenomenon of the spontaneous flipping of a Necker cube
as an example, he explained that the dynamic properties of
infermittent chaos characterized by its spontaneous shifts
between static and rapid transition modes could explain the
paradox of confinuous, yet also segmented, time perception.

On his consideration, we may still ask how such
spontaneous shiffs as those realized by intfermittent chaos
can be linked to conscious experience. Although Thompson
and Varela explain that such shiffs are accompanied by
shifts in neuronal bias, what is the formal mechanism of
this process?* Tani proposes that consciousness arises
in the correction and modification of dynamic structures
which, in biological cognition, are generated in higher
cortical areas.* The following attempts to account for the
development of levels of conscious experience in terms of
the development of the predictive RNN models described
so far in the current paper.

Insubjectiveterms, firstly anagentexperiences acontinuous
perceptual flow without this flow being arficulated in any
way, that is without this flow representing any discernible
thing or event. However, there should be retention and
protention in this primordial level, as explained by Husserl|
(see the last footnote).* Retention and protention are used
to designate the experienced sense of the immediate past
and the immediate future. They are a part of automatic
processes and cannot be controlled consciously. Husser!
believed that the subjective experience of “nowness”
is extended to include fringes both in the experienced
sense of the past and the future in terms of retention and
protention. This description of retention and protention
at the so-called “pre-empirical”level by Husserl seems to
directly correspond to what the basic RNN (as illustrated
in Fig. 1 in the earlier section) is performing. The RNN
predicts its next state by retaining the past flow in a
context dependent way as has been described. This self-
organized contextual flow in the forward dynamics of
RNNs could account for the phenomenon of retention,
whereas prediction based on this contextual flow naturally
corresponds fo protention.

With Husserl’s idea of “nowness” in tferms of retention
and protention, the following question arises: Where is
the “nowness” bounded? Husserl and Varela believe that
the immediate past does not belong o a representational

conscious memory but just to an impression, as suggested
above. This led Varela to wonder what kind of mechanism
qualitatively changes an experience from just an impression
to an episodic consciously retrievable event.”” Husserl’s
goal was to explain the emergence of objective time from
the pre-empirical level of retention and protention,* and
he seems to think that the sense of objective fime should
emerge as a natural consequence of organizing experience
info one consistent linear sequence. Still, the question
remains: What is the underlying mechanism for this?

One way of approaching this question is to consider
first that “nowness” can be bounded where the flow of
experience is segmented. Imagine that “Re Fa La” and
“Do Mi So” are frequently heard phrases. The sequential
notes of “*Do Mi So” constitute a chunk within the sound
stimulus flow, because the sequence can be predicted
perfectly by developing coherence between the predictive
neural dynamics and the perceptual flow. Within the
chunk, everything proceeds smoothly, automatically, and
unconsciously. However, when we hear a next phrase of “Re
Fa La” after “Do Mi So” (considering that this second phrase
is not necessarily predictable from the first one) a temporal
incoherence emerges as prediction error is generated in
the transition between the two phrases. The cenfral thesis
here is that consciousness arises as the agent attempts to
deal with the uncertainty or open possibility between the
two.

In Tani and colleagues’ RNN models, the winner module is
swifched from one to another in MixRNNs or PB is shifted
in RNNPB by means of error regression when the external
perceptual flow does not match with the internal flow
of the prediction. This matching is primarily occurring in
the window of the immediate past, as described above.
When the prediction is betrayed, the perceptual flow is
segmented info chunks associated with shifts of gates
or PBs, minimizing prediction error. Those segmented
chunks are no longer just parts of the flow, but events
that are identified by an activated local module or a PB
vector value, e.g., as one of the NAO robot’s behavior
primitives. Because of delays in the error minimization
process for optimizing gafe openings or PB vector, this
identification process can be fime consuming. This might
explain the phenomenological observation that the flow of
the immediate past is experienced only as an impression,
which later becomes a consciously retrievable object after
being segmented. This may correspond to an observation
of postdiction evidenced in neuroscience.* See Figure 10
for an illustration of the idea.

The higher level RNN in MixRNNs, RNNPBs, or MTRNNs
learns the sequences of the identified events and becomes
able to regenerate them as a narrative.

During memory retrieval however, the perceptual flow
can be reconstructed only in an indirect way since the
flow is now represented by combining a set of commonly
used behavior primitives. Although such reconstructions
provide for compositionality as well as generalization
in representing perceptual flow, they might lose subtle
differences or uniqueness in each instance of experience
depending on the capacities to retain perceptual dynamics.
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Figure 10. Prediction of future based on the
postdiction of the past.

Consequently, we presume that the sense of objective
time appears when experience of the perceptual flow is
reconstructed as a narrative in a compositional form, while
losing its peculiarity.

From the Bayesian perspective of Friston’s FEMP, the agent
becomes able fo reflect on the episodic sequence with
self-estimated certainty when the Narrow-IS condition
is applied to S-MTRNN, as shown in the aforementioned
experiments by Murata and colleagues.”® At this stage, the
agent finally becomes able to represent its own episodic
sequence in terms of a probabilistic model by inferring
that each chunk (moving left or right) simply arises with
a certain probability. This is a crucial transition from first
reflecting on its own experience as a deterministic “one
time only” episodic sequence occurring only in that way,
to viewing it as a probability which could have taken place
in other ways. From the latter point of view, the agent is
successful in ultimately objectifying its own experience by
reconstructing it info a generalized model accounting for
possible interactions between ifs self and others. However,
it is interesting tfo note that the agent in this stage does not
maintain anymore the subjectivity of naively intending for
an uncertain future, because all it maintains is ultimately
objectified models of probable futures. Together, these
stages of development should begin to account for the
process of an agent attaining a reflective self which is
only then potfentially mainfained, for example through
inner discourse and conscious narration and which only
then results in truly direct subjective experience, the
characteristic *“mineness” of h-consciousness as revealed
in our last paper.

3.5 DISCUSSION

With the composition of intentional sequences, we may
understand surprise as their unexpected correction
resulting in consciousness. To this, one may object
that one becomes conscious of many things without
surprise, but this objection is easily answered. Let us
consider that intentional processes drive the whole neural
network dynamics including the peripheral subnetworks
by means of chaos or transient chaos developed in the
higher cognitive brain area in order to act on the world in
achieving some end of agency such as in Murata’s robot
experiment and in Namikawa et al.”’ At this moment of
acting, some prediction errors may be generated at the
very least because the world is inevitably unpredictable
due to its openness relative for instance human cognitive
agency. Then, at the very moment when the infention state
is modulated by those errors back-propagated from the

peripheral to the higher level, the agent becomes conscious
of the formulation of intention upon which it has acted and
only in a “postdictive” manner,*? i.e., when the intenfion in
the past window is rewritten for the sake of accounting for
the current perception, there is consciousness.

With this, we may ask if we can apply the aforementioned
analysis to account for the delayed awareness of “free
will” as for example evidenced in the famous Libet
experiments?>®* One might imagine that no prediction
errors are to be associated with decisions about pressing
a button as in Libet’s experiments. However, in order fo
initiate a particular movement, internal neural activity in
peripheral areas including muscle potential states must
prepare for action. With this in mind, prediction errors
may arise when the higher cognitive level such as the
prefrontal cortex (PFC) or supplementary motor area (SMA)
suddenly attempts to drive the lower peripheral processes
such as the motor area and somatosensory area through
the parietal area, possibly by chaos, to generate a specific
movement when the lower parts are not yet prepared for it
(see Figure 11).
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Figure 11. Explanation of how free will can be initiated
unconsciously and how one can become consciously aware
of it with delay.>*

In such a situation, a gap may appear between the higher
level with the sudden urge for generating the movement
and lower level processes which are not yet ready for it.
This gap appears in the system as a sort of prediction error,
with the infention to act confounded by factors internal to
the system as a whole but still external to the intentional
processes, themselves. This difference, then, between what
is ideally infended and its practical exercise may then cause
the conscious awareness of one’s own intention, again with
a delay as described by Libet, Gleason and Wright,** and as
having been conjectured by Tani.*® To sum up, we consider
that free will may originate unconsciously by means of the
cortical deterministic chaos which can become an object
of conscious awareness only after a cerfain delay under
embodiment constraint in terms of postdiction.®”

Before concluding the current paper, give a close look
at the process of error regression at the moment that
prediction error increases due to unexpected perception.
This error regression process involves the nontrivial
phenomena of circular causality, analysis of which reveals
subtle characteristics of the conscious process. In simple
sifuations such as shown in the experiments by Murata and
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colleagues wherein possible actional decisions are only
two, either moving an arm to the left or to the right, the
conflictive situation can be resolved instantly by sudden
modulation of the intention by error regression.”® However,
realistic situations are more complex, for example, when
a system has to perform online modification of a goal-
directed plan by searching among various possible
combinations of behavior primitives by means of error
regression, while retaining immediate integrity in the face
of environmental forces, i.e., adapting to rapid changes of
the current situation until the newly formulated intention
can be carried forward.

4. CONCLUSION

The current paper reviewed a series of neurorobotics
studies conducted by Jun Tani and colleagues that attempt
to provide a purely formal, structural account of dynamical
processes essential for consciousness. The core ingredients
of Tani‘s models are prediction and postdiction through
predictive coding and implemented in different recurrent
neural network (RNN) models that together represent a
progression from reflexive to proactive, self-reflective and
creative agency. The review moved from simple to more
complex model hierarchies.

Robotics experiments employing these models clarified
dynamics inherent in levels of consciousness from
momentary self-consciousness (surprise) to narrative
self and reflective self-consciousness (the “chunking”
of experience and the arficulation of perceptual flow
according to developing action potentials). The paper
concluded with a brief phenomenological analysis of time
perception within this family of models, including model
extensions accounting for free will and its characteristic
postdictive conscious awareness. In the next paper, we
will begin with some of Tani and colleagues’ work on these
model extensions infto more complex situations, before
returning to Boltuc’s naturalistic non-reductionism and a
philosophical analysis of any claim to consciousness of
artificial systems.
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Kant on Constituted Mental Activity

Richard Evans
IMPERIAL COLLEGE, UK

1 INTRODUCTION
Consider the following functionalist claim:

There is an architecture, describable in the
language of computer science, such that any
creature or machine that realises this architecture
thereby counts as a cognitive agent, an agent with
original (non-derivative) intentionality.

Some of the more practically minded among us will be
dissatisfied with this existentially quantified assertion:
rather than just saying that there is some such architecture,
it would be much more helpful to know exactly what this
architecture is. What sort of architecture could satisfy such
a claim?

| believe the answer to this question has been hiding in
plain sight for over ftwo hundred years: in The Critique of
Pure Reason, Kant provides a detailed description of just
such an architecture.

At the heart of Kant’s vision is the self-legislating agent:
an agent who constructs rules that he fthen solemnly
follows. The Kantian cognitive architecture is a particular
type of computational process: a rule-induction process.
If this rule-induction process satisfies certain constraints,
then—Kant claims—the process’ internal activities count as
cognitive activities.

This paper sketches the philosophical background behind
this architecture. It attempts to motivate and defend Kant’s
vision of a self-legislating computational agent.’

2 MENTAL ACTIVITY AS CONSTITUTED ACTIVITY

We are familiar with the idea that social activity is constituted
activity. Pushing the wooden horse-shaped piece forward
counts, in the right circumstances, as moving the knight to
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