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Abstract

Generalization by learning is an essential cognitive competency for humans. For example, we
can manipulate even unfamiliar objects and we can generate mental images before enacting
a preplan. How is this possible? The current study investigated this problem by revisiting
our previous study (Jung et al., 2019), which examined the problem of vision-based, goal-
directed planning by robots performing a task of block stacking. By extending the previous
study, the current work introduces a large network comprised of dynamically interacting
sub-modules, including visual working memory (VWMSs), a visual attention module, and
an executive network. The executive network predicts motor signals, visual images, and
various controls for attention, as well as masking of visual information. The most significant
difference from the previous study is that the current model contains an additional VWM.
The whole network is trained by using predictive coding and an optimal visuo-motor plan to
achieve a given goal state is inferred using active inference. Results indicate that the current
model performs significantly better than that used in Jung et al| (2019)), especially when
manipulating blocks with unlearned colors and textures. Simulation results revealed that
the observed generalization was achieved because content-agnostic information processing
developed through synergistic interaction between the 2nd VWM and other modules during
the course of learning, in which memorizing image contents and transforming them are
dissociated. This paper verifies this claim by conducting both qualitative and quantitative
analysis of simulation results.
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1. Introduction

How can artificial agents, as well as humans, acquire knowledge and skills necessary to
generate goal-directed action using complex sensory streams such as vision, with generaliza-
tion? Specifically, how can they deal with unlearned situations as human do? If complex,
goal-directed action generation requires adequate communication and arbitration among dif-
ferent higher cognitive processes, such as plan generation, attention, and working memory,
how can they develop autonomously? The current study examines these questions by con-
ducting a synthetic modeling study using a robotic experimental platform. First, we consider
what sorts of higher cognitive competencies in robots would be crucial for reconstruction of
human cognitive behaviors.

1.1.  Higher cognitive competencies

One of the most essential higher cognitive competencies for humans is the ability to
learn to develop internal models of the world through iterative interactions with it (Wolpert
et al} |1998). Learning of the internal model must involve extracting latent structure from
partially observed sensory streams that could involve uncertainty and require probabilistic
representations, as required in many real world situations. Acquired internal models can
be used for various types of cognitive processes, such as imaging possible future outcomes
(Jeannerod, |1994) or rehearsing sensory-motor events experienced in the past (Epstein, |1980).
In addition, internal models can be used for various inferences, such as the current state,
from sensory inputs or optimal action plans to achieve desired goals by incorporating the
aforementioned mental processes (Friston), [2013). Related to this, it has been suggested
that humans are capable of extracting causal rules from repeated observations of physical
phenomena. Developmental psychologists have shown that human infants acquire basic
physical causal rules in early development (Reddy} 2008). For example, they learn that
when they act on an object, the appearance of the object could change, or that it will
remain the same if untouched, an attribute known as object permanency (Baillargeon et al.|
1985)).

Another essential higher cognitive competency is compositionality, by which the whole
can be composed/decomposed into reusable parts (Evans, [1982). Although the idea of com-
positionality comes originally from language, this also accounts for other modalities such
as those involving vision or proprioception. Visual systems in humans and other animals
develop compositional representation for complex visual objects in hierarchically organized
visual pathways (Van Essen & Maunsell, [1983; Tanaka, |1996). Likewise, it has been widely
assumed that various complex actions can be flexibly generated by adequate re-composition
with a set of behavior primitives (Arbibj, [1981) using hierarchical information processing
(Rosenbaum, |1991}; [Fuster} 2004). Here, it is crucial to consider that the objective of learn-
ing is not just to remember exact experiences of the past in the manner of a video recorder,
but to extract essential compositional structures along with hierarchical organization. This
is the way to gain generalization in representing skills and knowledge acquired through lim-
ited sensory-motor experience. Various related computational models have been proposed
for vision (Fukushima & Miyake, [1982; Weng et al [1993]) and for action (Kuniyoshi et al.
1994} 'Yamashita & Jun| 2008]).



The competency for attention and effective use of working memory must be also crucial.
Humans can attend to an important part of bulk information flow and can segment it from the
background using top-down prior knowledge (Posner, 1995)). Then, segmented information
is often saved in working memory for further manipulation using other information (Luck &
Vogel, [1997; |Downing, 2000). The information to be attended and manipulated using working
memory may be abstracted at a higher level, such as in the prefrontal cortex (Fuster, 2015}
Goldman-Rakic, 1995)) as well as lower sensory signals, such as from vision and audition
(Harrison & Tong, |2009; Nyberg et al., 2000; [Kumar et al., [2016).

Furthermore, humans have cognitive competency by which they can generalize experi-
ences in familiar situations to those in unfamiliar situations (Saffran et al.,|1996; [McClelland
& Plaut| 1999)). As an example, humans can physically and mentally manipulate not only
familiar objects, but also those having novel features, such as shape, size, and color. We
can grasp and lift a novel mug and can also image this action without much difficulty. Sur-
prisingly, humans can achieve this sort of generalization with only limited experience. How
is this possible? The current paper focuses especially on this question, as will be detailed
later. Although there are undoubtedly other higher cognitive competencies essential
to human cognition, such as social cognitive capability, the current study focuses on those
mentioned above.

1.2. Development of cognitive competencies via Synerqy

Higher cognitive competencies required for different aspects of human-like cognitive pro-
cesses raise interesting questions. How do they develop, and how can each of them be
adequately coordinated with others to maximize performance of the whole in solving various
cognitive tasks? It would be reasonable to presume that a single neural network cannot pro-
duce such a coordinated assembly of cognitive competencies, but it could conceivably develop
in a dynamic network allowing synergistic interactions among inter-connected sub-modules.
Furthermore, the function of individual sub-module networks may not be programmed by
evolution, but instead they may be self-organized through synaptic plasticity in the course of
learning to interact with other sub-modules, as neurodevelopmental studies (Sur & Ruben-
stein, 2005} Rakic, [2009; Li et al., [2016)) suggest.

There have been numerous studies to build an integrative brain model consisting of mu-
tually interacting sub-module networks. Since the middle 1990s, O’Reilly and colleagues
(O’Reilly, 2006} |O’Reilly & Frank| [2006) developed the so-called Leabra Cognitive Architec-
ture to simulate an integrative brain model using a connectionist approach. The integrative
brain model consists of sensory and motor inputs/outputs, the prefrontal cortex (PFC),
the posterior cortex, the basal ganglia (BG), and the thalamus. The model explains well a
mechanism for higher cognitive function assumed in the PFC in terms of dynamic gating of
working memory in the PFC by the basal ganglia. However, their models involve neither
predictive internal models nor temporal processes.

For more than 2 decades, Edelman and colleagues (Edelman) [1993)) have developed inte-
grative brain models based on the theory of Neural Darwinism using a series of DARWIN
robots. This theory postulates that variation and selection within neural populations drive
development and function of the brain. The latest version, DARWIN X (Krichmar et al.
2005)), was developed to investigate the problem of spatial memory development in rodents.



The simulated neural network model comprised 90,000 neural units in 50 brain areas includ-
ing a visual system, a head direction system, a hippocampal formation, a basal forebrain,
a value or reward system, and an action selection system. The navigation learning experi-
ment using the model showed a nontrivial result that placed cell-like structures developed
in the CA1 region in the model network just by providing biologically plausible connectiv-
ity with other regions. This embodied integrative brain model study postulates that brain
function in each brain region can develop through postnatal sensory-motor experiences by
utilizing anatomical connectivity between brain regions. This model, however, does not deal
with human-level higher cognitive competency, such as goal-directed planning using learned
internal models.

Eliasmith and colleagues (Eliasmith et al.| [2012; Eliasmith [2013]) developed the so-called
Neural Engineering Framework, which can generate neural systems consisting of millions of
spiking neurons allocated to more than 20 different brain regions, including both cortical
and sub-cortical areas. The neural system demonstrates a set of impressive higher cognitive
tasks, including serial working memory tasks, questions, and answers, and fluid reasoning
between inputs/outputs relation. However, the mechanism is devised in a purely engineer-
ing way, using a sort of neural compiler with a powerful parameter-setting mechanism for
determining optimal synaptic weights. Therefore, it would be difficult for the model to
acquire organizing principles to develop higher cognitive mechanisms based on learning of
sensory-motor experience.

1.83. Our prior study and new trials in the current study

Although the aforementioned studies have many interesting features, they cannot provide
exact answers for our current question. That is, how can cognitive competencies required for
goal-directed planning using visual attention and visual working memory develop through
dynamic interactions among a set of different cognitive processes. Here, visual working
memory has been known in neuroscience studies as active maintenance of visual information
to serve the needs of ongoing cognitive tasks (Vogel & Machizawal, [2004; Fuster & Jervey),
1982). Our research group investigated this question in a previous study (Jung et al.; 2019)
and in the current study. The previous study investigated (1) how an arm robot with vision
can learn a predictive model of the world by acting, using visual attention and working
memory effectively, and (2) how goal-directed plans can be generated robustly using the
acquired predictive model with generalization. The current study extended the previous
study to address the question of how the robot can generalize in learning to deal with
unlearned situations, such as manipulating unlearned objects. Let us consider previous
findings first.

In the previous study (Jung et al., 2019), a network consisting of sub-module neural
networks was assumed. More specifically, the whole network was comprised of a visual work-
ing memory (VWM), a visual attention module, an RNN module for predicting/generating
various types of dynamically changing variables. Those variables include parameters for ex-
ecutive control, such as for visual attention control as well as visual masking control, and
parameters related to visuo-motor pattern, including motor outputs, peripheral visual im-
ages as well as focused visual images in an attended area. Here, masking control of visual
images means that each pixel value in a certain region is filtered with a specific parameter.



Each modular network is designed to be differentiable, and macroscopic connectivities among
these modules are given.

Whole-network dynamics were modeled by following a framework of predictive coding
(Mesulam, 1998; Rao & Ballard, 1999) and active inference ([Friston et al., 2006) based on
free-energy-minimization (FEP; Friston, 2005). Note that in predictive coding and active
inference, attention is usually cast in terms of negentropy or precision of various likelihood
probability distributions. Here, this is implemented in terms of selection or masking by
effectively assigning zero precision to certain (non-attended) sources of sensory input.

This approach was taken because the FEP is considered one of the most influential the-
ories that accounts for the underlying principle of cognitive brains using a generic Bayesian
formula. Predictive coding accounts for perception of sensation in which perception is re-
garded as having been achieved when the error between sensory inputs and those re-generated
by the generative model are minimized by inferring an optimal value of the latent state. On
the other hand, active inference accounts for action generation wherein action on the envi-
ronment minimizes the error between the desired sensation and the actual sensation. In this
study (Jung et al.l 2019) learning is conducted by following a predictive coding framework.
More specifically, the whole network is trained to predict/reconstruct exemplar visuomotor
sequences to minimize the reconstruction error by modifying connectivity weights of the
whole network. This learning process also involves inferring optimal values of latent states
of the whole network, which represent intention or belief for generating the exemplar se-
quences. Consequently, these latent variables also determine the temporal development of
control parameters for visual attention, as well as visual masking. After learning converged,
the active inference framework was used to generate goal-directed action plans to achieve
given goal states. Optimal sequences of motor and control parameters for visual attention
and visual masking are obtained by inferring latent variables of the whole network so as to
minimize free energy while the connectivity weights are fixed.

In the current experiment, blocks of different colors were initially placed at random
positions in the workspace, and an arm robot with a video camera was required to stack
those blocks in an arbitrary configuration specified by the visual goal.  Test trials for goal-
directed planning were conducted with all connectivity weights of the network fixed after
the robot was trained in various stacking tasks using the same blocks during tutoring by the
experimenters. Separation of the training phase and the test phase was introduced for the
sake of simplicity. Experimental results showed that the robot could achieve goal-directed
action planning tasks successfully, showing a good generalization for novel situations. A
particularly interesting finding was that whenever the robot grasped a block to move it, its
visual attention went to the block autonomously while the static background image behind
the block was saved in the VWM. This strategy emerged as a result of learning because it is
beneficial for the network to allocate cognitive resources mainly for prediction of the visually
focused area, i.e. an image of the block to be moved while the visual image of the remainder
is saved in the VWM. This implies that the network may acquired a concept analogous to
object permanency (Baillargeon et al. [1985) during the course of learning the exemplar.

However, this network cannot generalize well for certain situations, such as when novel
blocks are introduced.  More specifically, when blocks with unfamiliar colors are introduced,
visuo-motor patterns of transferring such blocks from their grasped locations to a pre-selected
location could not be generated in goal-directed planning, even though other features of the



blocks, such as size and shape were the same as those of the learned ones. Why did this
happen?

This is because two mechanisms, learning to predict possible transformation of visual
images associated with hand movement and memorizing contents of the transformation, are
not dissociated. Therefore, the network is capable of imaging the visual transformation only
for prior learned objects. In this situation, we added another VWM to support predic-
tive generation of transformed images of given objects corresponding to their manipulation.
We consider a new VWM wherein stored pixel patterns can be transformed for arbitrary
rotation and translation by applying parameterised affine transformation. The parameter
for transformation is provided from the predictive RNN module at every time step. By
using such a VWM with the affine transformation mechanism, in order to generate desired
transformations of visual images, the RNN module is just required to learn how images in
the VWM can be manipulated, that is, it must learn to predict where the content at each
pixel position in the current time step is mapped in the next time step, depending on the
parameters provided to the affine transformation, but regardless of the content saved at each
pixel in the VWM. Dissociation of learning about parameterised image transformations and
memorizing image content should enhance generalization in image transformations, espe-
cially in cases of dealing with unlearned images, because the image transformations can be
performed in a content-agnostic way, i.e., independently of image and content. Some
cognitive neuroscience studies (Wilson et al., [1993; |Ungerleider et al., [1998)) have suggested
that humans may use multiple VWMs separately, such as for preserving object images and
for spatial or scenery images. Furthermore, from their neurophysiological experiments, Pail-
ian et al| (2017) suggest that storage and manipulation are separable cognitive and neural
mechanisms. These empirical studies may support the aforementioned modeling ideas at
least partially.

The current study hypothesizes that addition of another VWM would improve general-
ization capability significantly by developing adequate information flows between the newly
added VWM and other module networks, through learning. Particularly, we speculated that
this newly added VWM might contribute to dynamic transformation of visual images of
blocks, including novel ones, whereas the original VWM would store the static background
image in the same way as in the original study. The current study evaluates this hypothesis
by comparing performance in goal-directed action plan generation between cases with and
without the second VWM and also by comparing dynamic mechanisms developed in these
two cases.

The remainder of the manuscript is structured as follows. introduces related
studies and describes what novelties the current study inherits from them. Thereafter, we
will present an overview and introduce details of our model in [Section 3| |Section 4| briefly
describes dataset acquisition, followed by a presentation of experiments and their results. In
Section b a summary of the current study is provided and limitations of the current model,
as well as possible future studies, are discussed.

2. Related Work

As the previous section introduces briefly, the current proposed model uses predictive
coding and active inference based on the free-energy-minimization principle, which incorpo-



rate a set of cognitive mechanisms, including goal-directed planning, visual working memory,
and visual attention. The following explains these ideas by referring to related studies.

2.1. Free Energy Minimization

In the following, we appeal to many standard optimisation procedures, ranging from back-
propagation of errors, through long short-term memory to variational RNNs. Although these
schemes may appear bespoke and unconnected, they can all be understood as minimising
variational free energy. Optimisation can be cast as a gradient descent on variational free
energy (Isomura et al., 2020). Crucially, free energy gradients can, under simplifying (usually
Gaussian) assumptions be cast as prediction errors. This means that minimising prediction
errors destroys free energy gradients until a minimum is found. This general theme emerges in
several forms ranging from predictive coding formulations of prediction error minimisation,
to PID schemes for minimising proprioceptive error (Baltieri & Buckley, 2017), to back-
propagation of errors in machine learning (Bengio & Fischer, |2015)).

Negative free energy is known as an evidence lower bound in machine learning (Bishop,
2006). This means that minimising free energy is equivalent to maximising the evidence
or marginal likelihood for a generative model of sensory data. The form of this model is
our key focus here. In particular, its factorial structure produces a set of modules, each
concerned with a particular domain of inference and learning. This characterisation corre-
sponds to functional specialisation in the human brain. We leverage this by talking about
working memory, attention, and other cognitive processes associated with sentient behaviour
in humans.

Predictive Coding. Predictive coding presumes that perception can be achieved by mini-
mizing possible discrepancies between top-down prediction and bottom-up sensory reality
(Mesulam) 1998; Rao & Ballard, 1999). Predictive coding allows inference of hidden causes
of sensation in the environment by comparison of sensory expectation and observed reality.
Predictive coding rests on a hierarchical model in which prediction errors are propagated
bottom-up through the hierarchy to optimize high-level representations that provide top-
down predictions to guide successive predictions. It is assumed that the best explanation for
sensory input is found when the top-down projection can explain as much of the bottom-up
signal (at each hierarchical level) as possible (Brown et al., 2011]).

Free Energy Principle. Based on the concept of Helmholtz and the view of the brain as a
Bayesian inference machine, the free energy principle (FEP; [Friston) [2005)) introduces the
concept of free energy as a tractable measure of the discrepancy between observed features
of the world and representations of those features captured by generative models. More
precisely, free energy exceeds than the model’s negative log-evidence or surprise in sensory
data, considering a model of how they were generated. The evidence free energy F for
observed sensation can be written with decomposition into two terms as:

F = _\quw(z)[lnpe(X|Z)]l+DKL[qtp(Z)Hp(Z)l? (1)
a) Ac‘cruracy b) COElT)lexity

with hidden cause z, observation X and model parameters ¢ and 6. Here, it is essential to
note that p(z)/q, (%) are an estimated prior/posterior probability distribution of the hidden
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cause z before/after the observation of X. The accuracy term (a) includes a likelihood that
relates sensory observations X to hidden causes Z and ensures that observations X have the
same probability distribution as reconstructed by the approximate posterior g, (z) of latent
variable z. The complexity term (b) facilitates regularization of the model by minimization
of the divergence between the approximate posterior g,(z) and prior p(z). The evidence free
energy F can be minimized with respect to the posterior distribution g,(z) as:

¢p(2) = argmin F (2)

Friston| (2005) argues that problems of perceptual inference, i.e., inferring the causes of
sensory input, and perceptual learning, or learning a mapping of the cause to sensory inputs,
can be resolved using exactly the same principle. Specifically, both inference and learning
rest on minimizing the model’s free energy.

However, predictive coding accounts only for perception, but not for action generation.
In this regard, active inference developed recently by Friston and colleagues (Friston et al.
2006}, Friston, 2010)) proposes that action generation is a way to minimize prediction error
by changing sensory inputs via adequately acting on the environment.

Active Inference. The expected free energy G is defined for the future as it considers possible
effects of actions a applied to the environment. It can be represented with decomposition
into two terms as:

G = - Eyyo 10 po(X(0)]2)] + Dic lg (2 Ip(2)] 3)
a) Accuraz; in future b) Con‘l,plexity

where the first term represents the likelihood of experiencing a preferred sensation that is
given extrinsically wherein sensation is a function of action a. The second term represents the
same complexity term as the one in evidence free energy in [Equation 1] In active inference,
action a is optimized such that the expected free energy can be minimized as:

a = argmin G. (4)

Finally, by minimizing both the evidence free energy for the past according to
and the expected free energy for the future according to [Equation 4] perception and action
generation can be carried out simultaneously by closing the loop between action and sensation
(Baltieri & Buckley| 2017)). For practical applications, like control of a robot, optimization
of action at each time step to minimize the expected free energy by active inference can
be facilitated by a lower-level controller, such as a PID controller. In this case, the PID
controller receives the preferred proprioception of the next time step predicted by the network
model, which is set as a target joint configuration of the robot at the next time step (Tani
2003; Murata et al., 2017; (Ohata & Tani, 2020). The PID controller computes necessary
motor torques to minimize the error between the preferred sensation (i.e., the target joint
configuration) and the actual one. This process is considered equivalent to . By
this means, active inference can account for reflex arcs which can be mechanized by a PID
controller (Baltieri & Buckley, 2019).

outlines the aforementioned concept of closing the loop of action generation
and perception through environments by showing the relationship between predictive coding
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Figure 1: Illustration of closing action and perception by integrating predictive coding implemented in a
hierarchical network and active inference in a PID controller demonstrated in (Tanil [2003; Murata et al.,
2017; |Ohata & Tani, [2020).

implemented by a hierarchical network model and active inference by a PID controller (Tani,
2003; Murata et al., 2017; |Ohata & Tani, 2020). The hierarchical network predicts both
exteroception and proprioception in the next time step, based on the current latent state.
The PID controller receives the predicted proprioception as a target joint configuration and
generates the corresponding movement of the robot. Accordingly, the environmental state
changes and the hierarchical network senses the resultant exteroception and proprioception.
Errors between the predicted and the observed sensation in both channels propagate from
the lower level to the higher level, by which latent states in the network are updated toward
minimizing the error.

Although the above-mentioned process of action generation and perception is based on
only one-step-ahead prediction, the scheme can be extended to goal-directed planning to
achieve a preferred state several steps ahead, as described in the following [Section 2.2

2.2. Goal-directed Planning using Active Inference

Early work on motor planning (Wolpert & Miall, [1996; [Harris & Wolpert|, [1998) pro-
poses inference of optimal motor trajectories based on specific cost functions that include
minimization of the discrepancy to a desired goal state added with regulation terms such
as jerk minimization, position variance minimization against biological noise, motor torque
minimization, and so on, using acquired forward models. Such models have been developed
as inspired by neurobiological evidence (Itol [1970; Miall et al., [1993; [Wolpert et al.| [1998)).

However, combinatorial growth of complexity of the world poses challenges to scaling
such models by employing hierarchical organization and multimodal sensory association with
effective development of latent state trajectories (Finn & Levine, [2017; Nair et al., 2018; Jung
et al., 2019).

Jung et al.| (2019)) recently developed a goal-directed planning scheme that is analogous to
the framework of predictive coding and active inference. In their model, the hidden state of
a recurrent neural network (RNN) at the initial step plays the role of the latent state that is
assumed to have a Gaussian distribution with adaptive mean and standard deviation. Since
this latent state, in terms of the initial state of the RNN, determines the succeeding visuo-
proprioceptive sequence of all future time steps due to the initial sensitivity characteristics
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of an RNN as a deterministic dynamic system, this latent state can be interpreted as an
intention or plan of the model to perform future actions.

For a given visuo-proprioceptive sequence, a posterior of the latent state to reconstruct
the sequence can be inferred under the constraint of its prior as unit Gaussian.  This
is sometimes known as planning as inference (Kaplan & Friston, 2018). This idea of the
posterior inference of the latent state using the initial hidden state of the RNN can be used
in both learning and planning processes, as detailed below. It has been shown that this sort
of probabilistic representation of the latent state is beneficial for gaining both generalization
and robustness in learning as well as goal-directed planning (Jung et al.,|2019). The following
describes how training, planning, and action execution can be elaborated by following the
framework of predictive coding and active inference mentioned previously in [Jung et al.
(2019).

In this study, training of the network by optimizing the connectivity weights is conducted
first. More specifically, during training, the posterior of the latent state of the network ¢ (%)
for each training sequence, as well as connectivity weights 0, are inferred to minimize the
evidence-free energy shown in After training, while connectivity weights of
the network are kept unchanged, tests to generate action plans to achieve given goals are
conducted. Goals are specified in terms of visual pixel patterns that the robot can perceive
by looking at the goal state of the block layout in the workspace. For this purpose the
posterior latent state of the network is inferred to minimize the expected free energy shown
in [Equation 3| [Figure 2|illustrates the mechanism. The posterior latent state s§ for a given
goal g is inferred to minimize the error between the preferred visual state (i.e., the goal state)
v7)_, and the predicted state v;_, at the distal step N and also the one between the visual
state observed in the initial step ¥} and the predicted state v while the KL divergence
between the posterior distribution s§ and the prior unit Gaussian distribution is minimized.
Consequently, with respect to inference of the latent state of the network, given a goal to
be achieved, the planning process inquires what visuo-proprioceptive sequence would most
probably have been experienced.
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Finally when the robot is activated in the workspace using the inferred plan, the PID
controller generates adequate motor torques to minimize the discrepancy between proprio-
ception predicted by the network during planning and the actual proprioception in terms of
measured joint positions at each time step, as described previously. Hereafter, for simplic-
ity, we use the term "motor sequence” to refer to an inferred or predicted proprioceptive
sequence.

Although the RNN models used in the above-mentioned study are powerful in learning,
generating, and inferring complex visuo-proprioceptive sequences, their capabilities are still
limited, especially in dealing with high-dimensional visual image streams. Recently it has
been suggested that adequate uses of visual attention and visual working memory could
improve model performance significantly. Related studies that explore such possibilities are
reviewed next.

2.3. Visual Working Memory and Attention

Recently, challenges of learning long-term dependencies with RNN models have motivated
exploration of ways to incorporate working memory into RNN architectures. Methods that
extended the idea of simple attention mechanisms with that of general memory structures for
storage of more abstract representations are subsumed under the term memory-augmented
neural networks, like Neural Turing Machine (NTM; |Graves et al.| 2014} |Faradonbeh &
Esfahani, 2019) and Differentiable Neural Computer (DNC; Graves et all 2016), both of
which are inspired by the Von-Neumann architecture. Further, recent work inspired by the
concepts of the DNC addresses sequence-to-sequence translation and speech processing by
allowing access to the network’s memorized hidden states of all past time steps (Collier &
Beel, |2019; |Chien & Tsoul 2018; Le et al., 2018)).

In the following, we review related studies that introduce visual working memory (VWM)
and corresponding visual attention mechanisms. In comparison to previous approaches on
visual long-term memory, which mainly operate in higher-level feature spaces or on the level
of symbolic representations (e.g., Wersing et al.,|2007), the Deep Recurrent Attentive Writer
(DRAW) network (Gregor et al., 2015) introduces a VWM that is utilized as a sketch pad
for writing, saving, and reading pixel images. The VWM is sequentially manipulated by
an attention operation that focuses on a specific region of the visual sketch pad and an
update of the attended visual information. The attention shifts at each time step are
computed autonomously by means of mapping from the latent variable of the RNN wherein
the mapping is developed during the training phase. As a result, attention shifts facilitate
segmentation of complex patterns into a set of smaller sub-patterns and reuse of learned
visual features at different spatial locations.

It has been shown that the DRAW architecture can be effective for generation of complex
images with repetitive sub-patterns, e.g., generation of multi-digit number plates. Never-
theless, practical application of attention mechanisms and working memory have proven to
be difficult, as attention mechanisms lead to instability and local minimum traps during
training with the error back-propagation scheme (Tai et al.; [2019; Finnveden et al., 2020).

Jung et al.| (2019) investigated advantages of using VWM associated with RNNs for gen-
erating goal-directed action planning in a robotics task of vision-based object manipulation.
In their model, possible visuo-proprioceptive sequences reaching desired visual goal images
are generated based on predictive learning of exemplar sequences provided in the tutoring
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phase. In generating a goal-directed visuo-proprioceptive sequence, RNNs associated with
a VWM predict the visual image and proprioception of the next time step from the initial
step to the distal time step.

More specifically, RNNs composed of stacks of LSTMs (Hochreiter & Schmidhuber, 1997)
and convolutionary LSTM (Shi et al., 2015]) predict a set of variables at the next time step,
including proprioception, peripheral visual image, attended visual image and its attention
parameters, and two types of pixel-wise masks. Each pixel-wise mask contains a weighting
parameter at each pixel which is multiplied by RGB values at the pixel wherein the weighting
parameter at each pixel is generated by the convolutionary LSTM. Prediction of the visual
pattern of the next time step is computed by going through multiple paths using these
predicted variables.  First, the predicted peripheral visual pattern and the attended visual
pattern are merged into a visual image panel using predicted attention parameters, including
the position of the attention center in the pixel coordinate and the zooming ratio. Second,
the content of the VWM is updated by interpolating the visual image in the panel and
the currently preserved image in the VWM using one of the predicted pixel-wise masks for
VWM. The ratio of preserving the current RGB values at each pixel in the VWM depends on
the value of the predicted VWM pixel-wise mask for the pixel. The final prediction outputs
of the visual image are generated by interpolating the visual pattern in the panel and that in
the VWM using a further predicted pixel-wise mask. In this operation, the ratio of memory
retrieval from the VWM at each pixel depends on the value of the predicted output pixel-wise
mask for the pixel.

Introduction of the VWM system can greatly improve generalization and action planning
performance of the whole system by effectively storing visual images occluded by movements
of the robot in the VWM. Interestingly, the experimental results reveal that the VWM
represents not continuous movement of the blocks, but sequences of a snapshot image of the
block layout resulting from each block-stacking action. This represents succeeding sub-goals
corresponding to the outcome of each block stacking action, as will be detailed later.

3. Proposed Model

Our proposed model design, as illustrated in is an extension and modification
of Jung et al.|(2019). In this design, we sought to introduce as few structural constraints as
possible, in order to allow the system to develop necessary functions by itself in the course
of end-to-end learning. The architectural design of the model elaborates especially on (1)
a specific connectivity among different sub-modules; (2) newly considered parameterized
attention mechanisms; and (3) fusion operations that allow it to merge visual predictions of
RNNs with content of the VWMs.

The whole system consists of blocks of RNN-based generative models, an attention mod-
ule, and two visual working memory modules. The RNN blocks consist of the associative
LSTM (Hochreiter & Schmidhuber} (1997)), a multi-layer LSTM, and multi-layer convolution-
ary LSTM cells (convLSTM; |Shi et al., 2015). The associative LSTM ([Figure 3(1))) located
in the highest level of the whole network generates a sequence of top-down signals based
on its initial latent state value (Figure 3(i1)) and sends it to both the multi-layer LSTM

(Figure 3(iii)]), and multi-layer convLSTM ([Figure 3(iv)). The multi-layer LSTM predicts
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Figure 3: Schematic overview of the architecture of the proposed model, including the top-down and lat-
eral pathways involved in generation of visuomotor predictions. The connectivity of the model facilitates
development of two distinct mechanisms using visual working memory during training (7,8). Additionally
generated low-dimensional parameterizations (blue) and pixel-wise masks (lilac), modulate the information
flow of the system.
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sequences of motor joint angles in terms of proprioception (i.e., motor sequence with simplic-
ity) and multiple low-dimensional control signals. Proprioception is represented as sparse
activation patterns of basis functions of a softmax encoding, as indicated in .
Predicted control signals modulate the information flow in the system by parameterization
of visual attention and visual image transformation (Figure 3(vi)). Visual attention results
in a dynamic adjustment of the pixel density of different regions in images that are gener-
ated by the RNN. As explained in the following , visual attention allows the
model to focus on and predict the visual appearance of manipulated objects in greater detail,
while static parts of the generated images can be retrieved from the VWM. To overcome the
restriction of representations in the VWMs to static content, we propose additional parame-
terized visual image transformations. The visual image transformation performs a pixel-wise
transformation of images stored in a second VWM. As the result, the model becomes able to
generate the visual image of object manipulation by means of adequate parameterization for
the transformation applied to the visual image saved in this second VWM. For simplifica-
tion, we restrict the model to affine image transformations, such as expected for our depicted
pick-and-place scenario.

Predictions of the multi-layer LSTM are based on top-down signals received from the
associative LSTM, lateral connections to the multi-layer convLLSTM and its initial latent
state values (Figure 3(ii)]).

On the other hand, the multi-layer convLSTM predicts visual pixel images of the currently
attended region and a set of masks ([Figure 3(vii)). The masks are then used for mixing the
predicted image by the convLSTM with those saved in each visual working memory. Again,
this generation is based on the top-down signal received from the associative LSTM, lateral
connections to the multi-layer LSTM as well as the initial latent state values (Figure 3(ii)]).

By receiving the top-down prediction of visual image-related signals from the multi-layer
convLSTM, two VWMs, VWM-1 (Figure 3(viii)}) and VWM-2 (Figure 3(ix)|), contribute
to the final visual image prediction through their mutual interaction, as incorporated into
a set of parameterized visual image operations, attention, inverse attention, fusion, and
transformation. Attention (Figure 3(x))) is performed by application of the current attention
filter, of which parameters are predicted by the multi-layer LSTM on the plain visual image
for generating an attended image, and inverse attention is just an inverse transformation of
it. Attention and inverse attention correspond to bottom-up and top-down projections,
respectively, between neural representations of primary visual cues and of the abstracted
visual representation in the convLSTM. Crucially, such bidirectional connections are required
for inference of hidden states of the model within the predictive coding framework although
its biological plausibility has not been identified yet.

The fusion operations (denoted by symbol §)) are to fuse two sources of visual streams
with a pixel-wise mixing ratio represented by the corresponding mask generated from the
multi-layer convLSTM. Fusion operations are utilized for the composition of the final pre-
diction as well as for the update of the VWMSs. A further affine image transformation
(Figure 3(xi1)|) is applied to the visual image stored in VWM-2 wherein the transformation
is parameterized by the prediction output of the multi-layer LSTM. Details of the top-down
information flow of each block will be described later in [Section 3.1l

In the learning process, updating the initial latent states and connectivity weights of the
RNN blocks is performed with respect to minimization of the reconstruction error of the
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visual and proprioceptive target sequence (Figure 3(xii)|). To this end, back-propagation
of the error (BP; Rumelhart et all [1988) between the current prediction and the target
is performed through the aforementioned top-down pathways inversely for updating values
of the initial latent states. Connectivity weights of the whole network are optimized si-
multaneously. Thereby, the inference process consequently determines all parameters for
the aforementioned operations of attention, inverse attention, fusion, and transformation
at each time-step, since these parameters are generated by the RNN blocks as sensitive to
their initial latent states as well. In goal-directed planning, the error in the form of a gap
between the specified distal goal state and the mentally projected one is back-propagated
through time (BPTT; Werbos, [1990). Back-propagation is performed for inferring the ini-
tial latent states in the RNN blocks (while the connectivity weights of the whole network
are fixed) by which, plans, in terms of visuo-proprioceptive sequences for reaching the goal
state, are generated. Inference mechanisms described here using bottom-up error signals
for both end-to-end learning and targeted planning, become possible because the entire net-
work is designed to be differentiable. It is expected that adequate cognitive processes for
determining when and what to attend, as well as when and what to store or retrieve from
the VWMs is fully developed through end-to-end learning during error minimization. In
the following, details of each computational module, along with its connectivity with other
modules, are described. Furthermore, procedures for training, as well as for planning and
evaluating simulation experiments will be explained in detail.

3.1. Visuomotor Stream Prediction

The visuomotor stream network consists of visual (Figure 3(iv)|) and proprioceptive path-
ways (Figure 3(ii1)). Three layers of stacked LSTM (for proprioception) and convLSTM (for

vision) modules are utilized. Each layer receives contextual information from neighboring
layers, as listed in the following:
Top-down connectivity provides feedback from the next higher-level layer or from the
associative layer of the model. Top-down computations propagate the prediction or belief
of the network down to the sensorimotor level. A deconvolution operation is applied for
expansion of the dimensionality of the neural activation of each layer to the increasing
dimensionality of the next lower layer.
Lateral connectivity shares neural activation between visual and proprioceptive LSTM
cells that are on the same layer of the model. Like calculations required for top-down
processing, a deconvolution operation is applied to expand the lower-dimensional space of
motor representations to fit the dimensionality of the feature-maps of the visual convLLSTMs.
Bottom-up connectivity projects the neural activation of a lower layer of the model or
the current sensory input (i.e. vision or proprioception) into the subsequent layer. The plain
visual input image of the lowest layer of the model is transformed by the attention module,
and projection into the next higher layer is performed by a convolution operation with a
stride to reduce the sizes of feature maps and to facilitate spatiotemporal integration into
higher layers.

Neural activation of the RNNs in the visual vi* and motor m}{* pathways in the I*" layer
at time step t are computed as described below.
The lowest layers receive visual input v; and the softmax representation of the current joint
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angle configuration my:

Vi<, = ATT (v, af")  and (5)
m;< , = SoftMax(my), (6)

with visual attention transformation ATT(v;, a?*) and its parameterization o, as defined

in [Section 3.2l The input of the lowest layer of the network, v, and m;, depends on the
execution mode of the network. It is either a one-step-ahead prediction v;_; and m,_; of the
model, or the respective target v, and m; of the training data, as explained in more detail
in [Section 3.5 and [Section 3.5.1} Neural activation in the visual pathway (convLSTM block)
for layer [ =1 to [ = L is defined as:

(7)

net net net ; —
ynet {CODVLSTM (Vlfl,tu My g1, ay) ifl=1L
Lt —

ConvLSTM (vpel , myst | vieh, 1), otherwise.

Neural activation in the proprioceptive pathway (LSTM block) is defined analogously as:

net

Lt =

{LSTM (e, vist Lanet) =L 8

net net net :
LSTM (mlfl’t,vl’tfl, ml+1,t71) , otherwise.

In addition to an association of the visual and proprioceptive pathways by lateral connections
in each layer of the RNN blocks, the model includes an associative LSTM for a combined
representation of both pathways in the highest layer (Figure 3(i)). The associative LSTM
is implemented as a standard LSTM and receives projections from the highest layers of the

visual and proprioceptive RNN stacks. Its neural activation a}** is computed as follows:

a2 = LSTM(vI¥, | ml* ). ©)

net

The output of the convLSTM block is the prediction of the attended visual image v}
and a set of masks, calculated as:

vy = tanh(Deconv (v, ,), (10)
gllt\/ll _ ATTfl( D net att

ored | = o(Deconv(v) ;), ") and (11)
t

M2
] = oDeconv(vis,). (12)

t

with sigmoidal activation function o. The masks gM! and gM? modulate the pixel-wise update
of the VWMs. Further, the masks g”*! and gP** specify to what extent the final prediction of
the plain visual image is based on the VWMs or the prediction v of the convLSTM block,
as detailed in The proprioceptive prediction mP* as well as the low-dimensional
parameterizations a* and a}'?, which modulate the attention and transformation of VWM-

2, are computed from the hidden states of the proprioceptive pathway as:

m;* = MLP(m<, ), (13)
o;" = MLP(m}<} ;) and (14)
o' = MLP(mj} ), (15)
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with MLP denoting a fully connected feed-forward network with one hidden layer of Ny, p =
256 nodes, layer normalization, and rectified linear activation functions. The final propri-
oceptive prediction is generated by a decoding of the softmax encoded predictions of the
RNN:

m, = SoftMax ™" (m}*"). (16)

3.2. Attention

Visual attention is performed by means of parameterization of scaling and focal position
of the attention transformation. These parameters are generated by the multi-layer LSTM,
which receives top-down signals from the associative LSTM located in the higher level, as de-
scribed previously. Therefore, these parameters are actually determined by the initial states
of these LSTMs in all levels through the top-down causality chain. This means that optimal
parameters for visual attention during training and goal-directed planning are determined
by means of the inference of optimal initial state values for the reconstruction error mini-
mization. No explicit target values for the parameterization of the attention transformer
are provided.

Jung et al.| (2019) proposed distinct visual information processing with dorsal and ven-
tral pathways, as described in The dorsal stream processes a down-scaled,
low-resolution, peripheral visual input image, whereas the ventral stream utilizes a spatial
transformer network to process only an attended region of the visual input image, by crop-
ping and zooming. We presume that although this idea of two visual pathways is biologically
plausible (two-streams hypothesis; |(Goodale & Milner} |1992), implementation of this concept
in a synthetic model may not be always necessary, depending on the given tasks. Our prelim-
inary studies showed that visual image transformations by attention and inverse attention
are among the most important elements for successful development of visual working mem-
ory function during end-to-end learning (a comparison is presented in . In the
current study we propose a modified spatial transformer network (STN; |Jaderberg et al.
2015) that performs a non-linear transformation of the input image, such that a specific
region of the image can be focused with a high pixel density, while the unfocused regions of
the image can be represented with a lower pixel density as well.

Following the preliminary study, which showed that the novel attention scheme using the
modified transfer network provides a better performance, we employed a spatial transformer
network ATT : U € RNin#Nin s |/ ¢ RNnetwNnet for generating a composite representation
of the peripheral and focal visual image, each with a different pixel density ratio. The
pixel-wise transformation of a visual image from input location U to output location V is
defined by a modified grid generator (Jaderberg et al.,[2015), parameterized by a?**. Further

implementation-specific details are listed in [Appendix A}

3.3. Network-wise processing of vision

The multi-layer convLSTM outputs predictions of attended visual images along with a set
of masks used for fusion of the visual images. The final prediction of the plain visual image in
the next time-step is generated by performing further network-wise operations on this vision-
related information, including forward and inverse attention shifts, affine transformation,
fusion, and buffering using two visual memory buffers, one in the unattended (VWM-1) and
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Figure 4: Detailed view of network connectivity related to visual working memory VWM-1(a) and visual
working memory integration of VWM-2 (b). This figure depicts detailed views of the system diagram in

the other in the attended (VWM-2) visual feature space of the model. Details of network-wise
operations can be described by the following equations:

vwm, ) = (1 — ATT (g™, &) © vwm)™

+ATT (g O vi*, o). 1)
m Equation 17| describes how the contents of VWM-1, VWIIIM}I, can be updated, where gM!
denotes a pixel-wise mask and ATT™! performs inverse attention with arguments of the
predicted attended visual image v¥** and attention parameter a?*. Masking of the visual
streams is performed by the element-wise multiplication operator denoted by symbol ®. A
visualization of the network connectivity related to VWM-1 is depicted in [Figure 4a]

vwm;; =g © TRAN(vwm,"?, o)

+(1— g}t\/m) © ATT(Vwmthtvw att) ©o (gt ) .
[Equation 18| describes how VWM-2, vwmM?2| can be updated, as outlined in

The varlable M2 denotes a pixel-wise mask that defines the fusion of transformed contents
TRAN(vwm}f\42 aM?) of VWM-2 with time delayed (¢t — At,ym) contents of VWM-1, de-
noted as ATT(vwmyy, o) ®o (gt ) The update of vwm™? is restricted to recently
modified contents of VWM 1 by masking of vwm}™,, with o (g}M!).

(18)

Notes on the biological plausibility of the implementation of VWDMs: For the proposed com-
putational model, we refer to a simplified implementation of the VWMs as plain buffers.
Abstraction of underlying neurological details of memory formation is a common design
choice to reduce computational efforts in cognitive modelling of complex learning systems,
e.g. (Hochreiter & Schmidhuber} [1997; |Gregor et al., 2015} .Jung et al.;|2019)). Further, under-
lying neurological principles of memory formation and maintenance are still very much under
discussion and unknown to large extent. But we hope that future empirical neuroscience
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studies can evaluate predictions made from studies in cognitive modeling. Maintenance, up-
date, and read-out operations of the content of the VWMSs are based on primitive network
operations such as gating, time-delays, normalization, and non-negative fusion of pathways.
Further, the fusion operations, as required for the memory read-out, relate in their function-
ality to the competitive-layer model (Wersing et al., 1997, CLM), as they perform pixel-wise
winner-take-all operations between two sources of input features. As a result of our experi-
ments, segmentation of different objects in the visual image similar to segmentation by the
CLM can be observed, as discussed in [Section 4.3.3|

The transformation TRAN(vwmM? aM?) performs an affine projection of the input im-
age vwmM? by applying a spatial transformer network (STN; Jaderberg et al., |2015) with
parameterization aM? € R* covering independent scaling and shift factors for both image
dimensions.

Our preliminary studies showed that the introduced delay Aty is crucial for develop-
ment of content transfer from VWM-1 to VWM-2 during training. A short delay Atyym
overcomes the transition phase between approaching an object (predictions of the object’s
appearance are based on VWM-1) and moving the object (predictions are based on the RNN
and VWM-2) in which representations of manipulated objects in VWM-1 already start to
fade, as discussed in more detail in If not otherwise noted, we refer to a delay
of Atywm = 5 in our work.

Prediction v** of visual images in the attended visual feature space is performed by a
fusion of the predictions made by the convLSTM and the contents of VWM-2, defined as
follows:

V?tt :g?et ® V?et+ (19)
(1 —g") ® TRAN(vwm}"? o).

By applying the inverse of the attention transformation ATT ™' to the predicted attended
image v fusion with this transformed image and the image saved in VWM-1 becomes
possible, generating the final prediction output for the plain visual image at the next time

step v;, computed as:

vt _ gg)red o ATT_I(V?tt, a?tt)+

pred M1

(1 — g"**) & vwm] 20)

3.4. Inference and Sampling of Initial Sates

As discussed in [Section 2|, we utilize the initial state sensitivity characteristic of dynamic
systems for sequence generation in RNNs in order to represent task variability. This means
that variation in the initial states of RNNs accounts for variation in sequences generated by
the RNNs. The proposed model is trained with a set of successful visuomotor sequences, i.e.
sequences that achieve a given goal. Training involves inference of connectivity weights as
well as initial states of the network. Connectivity of the network is assumed to be fixed after
training and same assumption applies to generation of all training sequences. Two types of
initial states are inferred during training, as outlined in : 1. a common prior initial
state that represents the distribution of all training sequences, and 2. each different posterior
initial state for representation of each training sequence. After successful training, the

19



model is capable of regenerating all training sequences by setting the initial states with those
posteriors inferred in the training phase. In case of planning for novel goals, corresponding
initial states need to be inferred for generation of corresponding visuo-proprioceptive (i.e.
visuomotor) sequences for execution of goal-directed actions. Preparation of motor plans by
inferring appropriate initial states can be seen as analogous to motor planning in the brain,
as discussed in [Shima et al.| (2007)).

For implementation, we refer to a variational Bayes approach for probabilistic repre-
sentations of latent states, as formulated for the variational autoencoder (VAE; |[Kingma &
Welling, [2014)) and its extension to continuous RNN models (Murata et al., 2013, 2017).
The initial state sj is encoded as a probability distribution and is sampled using the repa-
rameterization trick (Kingma & Welling, 2014) to allow back-propagation of reconstruction
errors:

so = Hi+ €O o) with (21)
e ~N(0,I). (22)

The initial state s} for generation of optimal goal-directed actions for goal ¢ is defined
by its mean pf and standard deviation o, with auxiliary noise € sampled from a normal
distribution. The probabilistic representation of the initial latent state allows computation
of a belief or an estimate of precision in learning, as well as generation of each sequence. This
can provide significantly greater robustness in behavior of the model. Such benefits can be
observed especially in dealing with noisy or stochastic situations (Murata et al [2013) and
in comparison to previous models that refer to deterministic representations of the initial
latent state (e.g. |Arie et al., [2009; |Choi et al. 2018)).

3.5. Training

The proposed model is trained in order to generate multiple visuomotor sequences in
relation to their corresponding initial states. During the training process, the prior initial
state common to all training sequences, and the posterior initial states for each of them
are inferred. Each initial state is parameterized with a mean and a standard deviation,
which are updated during the training procedure, i.e. the prior and the posterior initial
states are updated simultaneously as in [Denton & Fergus| (2018). The weights, biases, and
initial states of the model are updated to minimize the evidence free energy, as discussed
in [Section 2.2} including the visuomotor reconstruction error as well as the Kullback-Leibler
divergence between the prior and the posterior initial states.

Our model is fully differentiable and can be trained by state-of-the-art gradient descent
methods, like the ADAM optimization technique (Kingma & Welling, |2014).

The loss LY for the g-th goal of the training data is calculated as:

L9 = LY + L9, + BDxr. (g0 (s8) [po(s0)) + L1, (23)

with parameterization of the posterior and prior initial state, ¢? and 6, respectively. The
function Dk, (+) denotes the Kullback-Leibler divergence and the hyper parameter 8 adjusts
the balance between the minimization of the prediction error and the divergence between
prior and posterior, as previously proposed in [Denton & Fergus| (2018).  Note the formal
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similarity between [Equation 23| and [Equation 1| (and [3|) where the accuracy corresponds to
the various components of negative loss, LY.

The functions of the visual LY and proprioceptive LY, reconstruction loss are defined as
follows:

TI T9

Lg=> L5, =Y s"o ¥, -v{) and (24)
t=1 t=1
T 79

Ly = L, =Y Dgr(SoftMax(iny, ,)|[fne s). (25)
t=1 t=1

Lengths of trajectories are denoted by 77, the proprioceptive targets for time step ¢ in
softmax encoding by my ,, and visual targets by v/. Additionally, we introduce s}** to
balance contributions of the focal and peripheral regions of the visual error signal to impede
an over-representation of back-propagated gradients of the focal area, caused by the attention
transformation, as detailed in [Appendix B| The regularization term of the loss function
includes the ¢;-Norm of the masking operator ge; to prefer predictions based on VWM-2
over predictions of the RNN blocks, even though pixel-wise predictions from RNN blocks
may achieve a smaller prediction error on the training data. The regularization loss is
defined as Lﬁ = L ZtT:q L(ALt|8nett|1). The magnitude of the regularization factor A, is
calculated by application of a sigmoidally shaped function on the current training epoch.
A low regularization A, at the onset of learning supports development of VWM-1 and an
increasing and bounded regularization factor toward the final learning phase results in a
preference of contributions of VWM-2 over predictions from RNN blocks, if applicable. If
not otherwise noted, we apply /; regularization, and scaling factor A . is defined in relation
to the current epoch e as:

0, if e < 3750
e = { (26)

4.0 - min(1, (e =3750) /1250),  otherwise.

The proposed loss L7 is defined for a single training sample, but can be trivially extended
for a mini-batch learning configuration. An overview of implementation of the training
process is depicted in [Algorithm 1}in|[Appendix C| The training phase follows the closed-loop
training scheme (Yamashita & Jun| |2008)) to minimize the prediction error and thereby to
improve mental simulation capabilities of the model. For closed-loop training, predictions
of the model are fed back to the model as inputs for the next time step. However, as a
sole closed-loop optimization of the model can lead to a strong divergence of network states
(instability in training in particular is critical for early phases of the training process), a
mixture of model predictions and training targets is used as a feedback signal for the next
time step. Therefore, the feedback signal of the network is calculated as follows:

vi=0 = 0.9v, ; +0.1v, and (27)
m/=" = 0.9m,_, + 0.1m,. (28)

3.5.1. Planning

As previously discussed (Section 2.2)), planning for an action, given a novel goal is con-
ducted by minimizing the expected free energy and searching an optimal posterior of the
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initial state of the model. In our work, the goal is specified in terms of desired visual sensation
at the end of the predicted sequence.

The optimal posterior is found if a few steps of the initial visuomotor sequence as well as
the visual sensation at the goal step, both generated by the network, match those specified
for each task trial with minimal error while the KL divergence between the posterior and
the prior can be minimized as well.

In the beginning of the iterative search of the posterior initial state, its value is initialized

to the prior estimate as inferred during training through [Equation 23|
Consequently, the loss function for plan generation is defined as:

Ty

Ly = Z(ng/,t + Liny) + BDxr(gsa (s9)l1pe(s0)) + L 1., (29)

t=1

with parameters for the initial state denoted as ¢9 for the g-th goal of the test cases. The
length of the initial sequence is denoted as T, and 7T, specifies the time step in which
the desired visual image for the goal configuration should appear. Further details for
implementation of the planning process are depicted in [Algorithm 2|in [Appendix C| Note
that in this case, the function of the generative model is fixed by fixing its weights. Then,
updates of the initial state of the model in order to minimize the loss L7 result in trajectories
that reach a specified goal, as they minimize the visual discrepancy between a desired goal
state and the predicted state at the final time step.

4. Experiments

The current experiments introduce a block-stacking scenario in which the task is to
arrange three blocks in a tower configuration. Successful stacking operations of a robotic
actuator have been recorded in a real-world setup, as presented in [Figure D.9. During
training, only three blocks of different colors (red, green and blue) are introduced and the
model evaluation assesses the generalization to new block positions and stacking orders. In
addition to the recorded dataset that includes three block colors, we prepare an additional
augmented version of the dataset in which colors of the objects are replaced by one randomly
permuted in the color plane (see the details in . The augmented data set
allows an evaluation of the generalization capability of the models in dealing with objects
having unfamiliar appearances, such as a new color. A discussion on further conditions,
including experiments that explore generalization to more complex visual appearances such
as textures, is shown later (Appendix Appendix G).

In the current study, two types of experimental evaluations are conducted. First, a de-
scriptive evaluation of system performance is performed. The purpose of the descriptive
evaluation is to explore possible developments of cognitive mechanisms in the network, in-
cluding a scheme developed to manipulate visual images using visual working memory. Sec-
ond, a quantitative evaluation is conducted wherein comparative analysis of performance in
goal-directed planning is carried out under various conditions. Performance is measured by
computing errors generated between the ground truth and the visuomotor sequences inferred
for a set of goal-directed planning cases. Note that the terms "motor sequences” and ”pro-
prioception” are used interchangeably in our work, as the inferred proprioceptive sequences
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are used as targets for the feedback controller of the robot’s actuators and low-level control
is neglected, as previously disused in [Section 2.1} In order to evaluate the generalization ca-
pability of the trained network, which is required especially for content-agnostic information
processing, we conduct goal-directed action planning experiments under novel task configu-
rations by introducing objects with novel colors, as described previously. These evaluations
are conducted with comparisons among three different models, including the current model,
the previous model with one visual working memory, as proposed by Jung et al.| (2019), and
one without any visual working memory. It is expected that the currently proposed model
using two visual working memory modules should show a significantly better generalization
performance compared to those with only a single memory module for the following reasons:
first, neuroscience literature suggest the human uses multiple specialized VWMs rather a sin-
gle one (Wilson et al., [1993; [Ungerleider et al.| [1998)); and second, the implementation of a
second VWM and its transformation in the attended visual feature space of the model allows
a dissociation of learning about the parameterized image transformations and memorizing
the image content, as discussed in [Section 1.3|

4.1. Data set acquisition and experimental setup

For evaluation, the system is confronted with a complex multimodal sensorimotor task.
As the task design in shows, a robotic actuator (Torobo Arm; Tokyo Robotics
Inc.|, 2020)) is mounted in front of a table, on which three box objects are placed at random
positions. The actuator is commanded in joint-space position control in order to perform
two successive stacking operations of the randomly placed objects, each of which results in a
tower of those objects. For these experiments, we utilize 6 of the 7 degrees of freedom of the
robot, since an additional rotation of the end-effector is not required for object manipulations
of the task.

Test and training trajectories for pick-and-place manipulation for the block stacking task
are generated based on kinesthetic teaching of the robot. Recording is performed at 20Hz and
downsampled 7 times to reduce computational and memory costs. Automated generation
of trajectories results in variation of ~10% of their lengths. Please note that the proposed
model is based on a RNN and allows representation of sequences with variable lengths.
The final preprocessing, as detailed before, results in visuomotor sequences with a length
of T, = 100 £ 5 steps for training and test evaluation of the models. Permutation of the
stacking order of three colored blocks (red (r), green (g) and blue (b)) of size 5em? resulted
in six possible tower configurations. Training is performed for four tower configurations
(RGB, RBG, GBR, GRB) and excluded the configurations (BGR and BRG), which are
only included in the test data set. Block positions are sampled from 10x10 and 8x8 grids
for training and testing, respectively, in order to test generalization for previously unseen
spatial location distributions of objects.

In addition to joint trajectories, the visual frame sequence of an external camera that
shows the objects and the robot actuator interacting with them are stored in a dataset. The
recorded dataset contains 300 task configurations with randomly placed objects and ran-
domly selected tower configuration as goals for training, and 45 task configurations used for
evaluation that are distinct from the training set. The augmented test data set is generated
by a random selection of one of 5 permutations of the color planes of visual sequences for all

23



45 sequences of the test data set. During training, temporal sequences of successful senso-
rimotor signals that fulfill the task goals are presented. The trained network was evaluated
for its ability to generate plans using the schemes described in to achieve novel
goal configurations, starting from novel object arrangements, including cases using novel
object colors. Quantitative evaluation was made based on the measured error between the
generated plan of action and the ground truth.

4.2. Implementation details

Network parameterization: The associative LSTM at the top of the RNN module, which
integrates the visual and proprioceptive streams, contains a single LSTM layer with 512
neurons. The proprioceptive and visual pathways of the recurrent neural network are based
on three layers of multi-layer LSTM cells and multi-layer convLSTM cells, respectively.
The multi-layer convLLSTM includes 16, 32, and 64 feature maps from the sensory to the
highest layer. To project features to the next higher layer, convolutional kernel size, stride,
and padding sizes were set to bx5, 2x2, and 2x2, respectively. Deconvolutional kernel size
stride, and padding to project features to the next lower layer were set to 6x6, 2x2, and
2x2, respectively. For lateral connections from hidden states of the motor pathway to the
visual pathway and the projection from the associative LSTM, convolutional kernel sizes
are selected in such way as to match the feature dimensionality of the respective layer of
the visual pathway. Forward transformation of the attention transformer downscales the
resolution by a factor of 0.75 (32x32 to 24x24 pixels), or 0.625 (64x64 to 40x40 pixels), to
fit the size of prerecorded data sets. The proprioceptive pathway is based on a multi-layer
LSTM with 512, 256, and 128 neurons from the lowest to the highest layer. For prediction
of proprioception and parameterization of the attention modules, a multilayer perceptron
(MLP) with one hidden layer of 256 neurons, layer normalization (LN; Ba et al., 2016)
and rectified linear unit (ReLU) activation functions is utilized. Note: We observed that an
under-representation (low dimensionality of convolutional hidden layers) results in a colorless
representation of the scene, but we have not systematically analyzed this effect.

Training of the network: Training of the model by minimizing the loss function of
was performed using the ADAM optimizer (Kingma & Welling, 2014)). Optimization
of initial states, weights, and biases was performed for over 4500 epochs, until convergence of
learning. The learning rate was set to 5x 10~* and the hyper-parameter 5 was set to 1 x 107°.
To prevent instability during training (i.e., ezploding gradient problem) we performed gradi-
ent clipping (Pascanu et al., |2013), which re-scales gradients based on the /;-norm in case
the norm of the gradients exceeds 0.2. The mean and standard deviation of the prior and
posterior initial states were set to 0 and 1, respectively.

Planning and Evaluation for Unseen Situations: Planning of actions for a previously
unseen goal is conducted using the loss L, as defined by [Equation 29 ~ The posterior initial
state of the model is optimized for the best match of the visual images of the first T, = 5
time-steps (the state of the world before a goal-directed action was executed) and a desired
visual goal image at the end of the sequence at the final time-step 7.. An initial tentative
value of the posterior is set with the value of the prior that was acquired as a common value
for all sequences of the training set and represents the distribution of all training sequences,
as described in[Section 3.5 The successive update of the posterior performed for the planning
process is explained in detail in[Section 3.5.1] In order to update the initial state estimate at
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each epoch, the visuomotor sequence is generated 16 times by repeated stochastic sampling
of the posterior initial state, the mean and variance of which were inferred. One of the
sampled initial states that results in the lowest planning error after 50 epochs of inference
is selected as the final result of the planning process for the given goal. The visuomotor
sequence generated from the final initial state obtained is considered the final visuomotor
sequence plan. Note that even though the loss function L, inhibits deviations only in the
visual modality for the final configuration, reasonable generation of motor/proprioceptive
sequences can be expected since training was performed using an association of vision and
proprioceptive sequences.

4.3. Descriptive Evaluation of Results

In this subsection, we first discuss a qualitative analysis of the neural mechanisms self-
organized in the model after successful training. Thereafter, we will show the results of a
comparison to previous models and discuss the importance of VWM-2, the second visual
working memory that is introduced in our study with the aim to improve the generalization
capabilities of the model.

4.3.1. Self-organized neural mechanisms

To assess the properties of our proposed system, we analyze the internal states of the
visual pathway and the output of the model during execution of inferred plans for previously
unseen tasks. Due to the task nature, involving two consecutive stacking actions, the objects
switch their ongoing roles from being part of the background to being manipulated objects
in the visuo-proprioceptive sequences, generated as plans.

One exemplary evaluation is shown in which displays the internal states of
the visual pathway, the prediction of the proprioceptive pathway, and the error between the
generated plan and the ground truth. The evaluation visualizes the mental simulation of
the generated plan and the respective expected visual perception for a previously unseen
arrangement of objects and unknown colors, e.g., the newly introduced orange block.
ure 5(i){ allows a comparison of the ground truth joint-angle trajectories of the augmented
test data set with the inferred trajectories of the planning process that is shown in
Trajectories #0-4 (blue, orange, green, red, purple) represent joint angles of all 5
active rotary joints of the robot arm and joint angle #5 (brown color) refers to the one of the
linear actuators of the robot gripper. A visualization of the mismatch between the ground
truth of the visual stream of the augmented test data set (Figure 5(iv)]) and the inferred
visual perception during plan execution (Figure 5(v)) is shown in [Figure 5(iii), The visual
stream shows every 8th time-step of the generated sequence of the model.
marks the current focal area, in terms of size and position of the attention transformation,
indicated by a red square. Parameterization of the attention transformer is generated as an
additional output of the multi-layer LSTM, as outlined in [Figure 3(5)|

shows the content of the visual buffer of VWM-1. [Figure 5(viii, ix and]
show dynamics of the visual buffer of VWM-2, including the update and readout path-
ways. At each time-step, the visual buffer of VWM-2 can be updated with
a transformation of its own content or the time-delayed and masked content of VWM-1, as
indicated by |[Figure 5(vii.i)l The readout of the visual buffer of VWM-2 developed through
the self-organized masking operation is shown in [Figure 5(viii)| [Figure 5(x.i and x.ii)| detail
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Figure 5: Results of successful planning in a case with objects having learned colors (green and blue) and
a novel color (orange) with the goal of building a stack of blocks, green on blue and orange on green.
Visualization of the internal states of the proposed model and the discrepancy between the inferred plan and
the ground truth. An animation of the internal states is available online at https://youtu.be/pZBMEIjjh6Q.
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a higher temporal resolution (At = 1) of the time window from time-steps 24 to 48 and from
time-steps 72 to 96, respectively, in which the transformation of images stored in VWM-2
during the object manipulation can be seen.

Let us next examine in more detail what sorts of internal representations have emerged
through development of internal mechanisms as a result of end-to-end learning of visuomotor
samples. We can observe the same types of developments in visual attention as well as in
the use of VWM-1 with those observed in the previous study (Jung et al., [2019). Parame-
terization of the attention transformer, generated by the RNN, results in behavior in which
the focal area follows the end-effector, and thereby the manipulated object, as shown by the
red annotations in [Figure 5(v)] Keeping the currently manipulated (i.e., moving) object in
the attended region of the visual stream is beneficial to minimize the prediction error, as it
cannot be represented by the static visual buffer of VWM-1. A further interpretation of the
behavior of the attention transformer is that it contributes to minimization of the retinal
slip, e.g., de Brouwer et al.| (2001)), by tracking predicted future target motion. Spatial
transformer networks, such as those used for implementation of the attention transformation
are difficult to train, in particular as calculations of error gradients with respect to their pa-
rameterization is based on local (i.e., bilinear) interpolation of nearest pixels. Therefore, a
sufficiently high frame rate of the sequences is required to avoid sudden and noncontinuous
movements of objects in visual images, which cannot be tracked by optimization of the model
though back-propagation learning.

The presented results, as well as previous work by Jung et al.| (2019), show that the
content of VWM-1 represents static parts of the visual scene. For example, when the robot
picks up the green object to manipulate its position (around time-step 16 in the ground
truth shown in [Figure 5(iv))), the image of this manipulated object disappears from VWM-
1, seen between time-steps 16 and 40 in . However, after placement of this
green object around time-step 40, the image of this placed object reappears in VWM-1 as a
static image, as shown around time-step 40 in Therefore, it is presumed that
successive updates of the visual buffer of VWM-1 represent sequences of changes in the static
layout of objects by capturing a meaningful structure of sub-goals in the semantics of the
pick-and-place behavior.

Due to differences in basic connectivities given, and information flow between VWM-1
and VWM-2, the ways of using buffers in these two memory systems were developed very
differently. At the onset of a pick-and-place action of the green block (time-step 24) toward
a new position, the content of VWM-1 that represents the green block is copied into the
visual buffer of VWM-2 of the network, e.g., |[Figure 5(vii.i)l During the mental simulation of
manipulating the object, VWM-2 and other connected modules retain the basic shape of the
object, while they transform the visual buffer image in VWM-2 to reflect expected position
and size changes in the visual appearance of the object in the mental plane.

Visualization with a higher temporal resolution from around time-steps 24 to 40, as
shown in reveals that transformations of the content of VWM-2 represent visual
imagery for manipulating the green object, in which position, as well as size changes, can be
observed while mentally moving the object closer or farther away from the installed camera.
Similar behavior of the network can be observed for the second block (the orange block),

from around time-steps 72 to 88, as shown in [Figure 5(x.ii)l Although this orange block
is actually a block with a novel color, information flow for manipulating this novel block is
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exactly the same as with the known one, e.g., the green block shown in
Moreover, it can be observed, at time-step 40, that placing the green object in its final

position occurs contemporaneously with a sudden update of the visual buffer of VWM-1,
using the content of VWM-2, indicated by the red arrow in [Figure 5(vii.ii)| where we can see
that the green block shown until time-step 40 in viii) is copied back to VWM-1. The same
can be observed when placing the orange block at around time-step 88, as indicated by the
downward arrow shown at the right side.

These observations indicate that a mental image of a continuous visual pattern for pick-
and-place actions of an object on top of other objects was developed through iterative infor-
mation exchanges between VWM-1 and VWM-2. In particular, it can be seen in VWM-1
that each such routine for stacking one object on another is concatenated with abstractions
wherein only a static image of the 3-block layout, the result of each block manipulation,
can be seen as described previously. Also, the image of the robot gripper cannot be seen
in VWM-1, which is analogous to a phenomenon known in cognitive neuroscience as sen-
sory attenuation for self-generated action (Blakemore et al., (1998, 2000). Furthermore, it
can be seen that even when some objects are occluded by the robot gripper in the ground
truth visual sequence, they are represented in VWM-1. This phenomenon is analogous to
object permanency studied in developmental psychology (e.g., [Piaget & Cook (Ed.), 1952}
Baillargeon et al.l [1985). Related to this, [Lang et al. (2018]) showed in a synthetic robotic
study that sensory inputs generated by one’s own movements can be diminished for the
purpose of reducing possible occlusion generated by the robot’s own body because sensory
inputs can be mentally imaged by means of prediction, using the motor efference copy. Also,
Bechtle et al.| (2016]) showed that object constancy can be developed by learning forward
relationships between movements of robots and their sensory consequences, perceived from
visual input. By looking at neural activity in VWM-2, it can be seen that detailed visual
spatio-temporal patterns for each block stacking routine are generated after receiving the
initial image of the object to be manipulated as copied from buffer VWM-1 with adequate
attention. It should be interesting to observe that such cognitive mechanisms of chunking
and abstraction can emerge through dynamic interactions among multiple sub-modules in
the network, as the result of iterative end-to-end learning.

4.8.2. Comparison with Previous Models

The previous model by |Jung et al.| (2019) is limited to using one type of memory, which
is represented by VWM-1 in the current model, by which background information, such as
an image of a static object layout is preserved. A set of plan generation experiments was
conducted using the current model, but excluding VMW-2, so as to demonstrate the benefits
of the current model, which integrates VWM-1 and VWM-2. An analysis of the resulting
visuomotor plans for new situations reveals that as expected, the model lacking VWM-2 is
unable to cope with objects having novel colors in all situations. When a block with a novel
color is introduced, it is treated as background and is represented correctly in VWM-1, as
long as the block is not manipulated. However, as soon as this block is grasped, the RNN
module, instead of VWM-1, starts to generate sequences for transforming the image of the
block, wherein the color of the block gradually shifts to a known color. Generated actions
are not necessarily affected by this failure in generating the correct visual appearance of the
blocks; therefore, reasonable motor plans can sometimes be generated. However, in such
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situations, the likelihood of confusing the order of block stacking increases.  Further details
on these experiments are discussed in [Appendix E]

We conducted further experiments that highlight differences in representations of the
task in the attended visual channel between the previous model (Jung et al., 2019) and our
proposed model architecture. These results are presented in in detail and show
that unification of the dorsal and ventral visual streams and the additional VWM-2 result
in a more abstract representation of the task in which unimportant details of the task are
attenuated.

4.8.3. Generalization Capabilities and Content-Agnostic Information Processing

Results in [Figure 5| indicate that the model is able to generate adequate plans to achieve
specified goal states even when manipulating objects with unrecognized colors by achieving
generalization in learning. In particular, emergence of meaningful information flow was
detected where visual imagery for manipulating unseen objects is generated by network-wise
visual image processing using two visual working memory modules. More specifically, when
an unseen object is grasped for manipulation, its appearance is copied from VWM-1 into
VWM-2. Then, an image of its being moved and placed on a specific block is generated by
iterative application of an affine transformation to the copied image wherein parameters for
the transformation are adequately controlled by the RNN module. In these processes, skills
for transforming a given image are acquired independently of the image itself, i.e., color of
objects.

What we see here is dissociation of content from information processing, since the image
of the objects and its transformation is represented in different sub-modules of the network.
illustrates the self-organized mechanism for manipulation of VWM-2 of the model.
The content of VWM-2 can be updated by a memory transfer from VWM-1 (shown in red)
or transformation of its own content (shown in black). Transformation of memory content
is performed by an affine transformation, parameterized with low-dimensional parameters
that are dynamically controlled by the RNN (dashed, black). This transformation is not
performed directly on the content of VWM-2, but by temporal mapping of each pixel position
in the retinotopic visual coordinate in VWM-2 in the current time-step to one in the next
time-step. This means that gray scale RGB information stored at each pixel position at a
current time-step is copied to a new pixel position as computed by the parameterized affine
transformation for the next time-step. This might be analogous to the difference between
mapping of content and mapping of its address indicated by the pointer where the content
is stored. Readout and update of memory content are performed by pixel-wise masks, also
generated by the RNN (dashed, red). As a result, the visual image is not predicted by
the RNN directly. The RNN only determines from where and how memory content is
processed. The resulting content-agnostic information processing is illustrated in [Figure 6b|
It shows that the focused region of the visual image includes important elements of the
current sub-task (a gripper and a manipulated block) and that its pixel-wise image content
is transformed over multiple time-steps in VWM-2. This is different from the case in which
an RNN generates spatio-temporal patterns of visual imagery directly, as in a case without
using VWM-2, since the RNN learns to generate image contents and their transformation in
a mutually dependent manner, as embedded in the distributed synaptic weights. Therefore,
an RNN by itself cannot transform unlearned image contents adequately.

29



______________________ t t+1 t+2
{ - (0]

Mask 7 >
e »| Affine VWM-2,,,
Parameterization| Projection ( ; )
Lg tet+1
: update \/ \/
¥ M2 M2 M2 M2
VWM-2, TRAN(vwm, ™, ") TRAN(vwm, . @, ")

(a) (b)

Figure 6: Illustration of observed pixel-wise image manipulation in VWM-2. The content of VWM-2 is
updated by a pixel-wise copy from VWM-1 (red) or a pixel-wise transformation of its content (black) as
shown in (a). Content is updated by the parameterization of an affine transformation, generated by the
RNN (black; dashed line). Illustration of the sequential transformation of VWM-2 is depicted in (b).

Heuristically, the observed content-agnostic information processing, such as separation
of context (i.e., motion) from content (i.e., the content of pixels), can be regarded as a
generic form of factorisation of a generative model. This canonical factorisation is seen in
terms of what and where pathways in the brain and may reflect the fact that knowing what
something is does not tell you where it is or how it is moving. This means that one can
assume conditional independence, thereby greatly increasing the efficiency of inference. This
is a key aspect of variational free energy minimisation, that is defined by the factorisations
(a.k.a., mean field approximations) implicit in generative models.

The current study shows that content-agnostic information processing, as described
above, is crucial to achieve generalization that allows handling of previously unseen con-
tent. Next, we provide quantitative evidence to support this hypothesis.

4.4. Quantitative Evaluation

In the following section we present results of a quantitative evaluation of three different
models, including those with no visual working memory, those with one visual working
memory (VWM-1), and those with two visual working memory modules (VWM-1 and VWM-
2) on goal-directed planning in the block stacking scenario, as described in . In this
evaluation, errors between the ground truth trajectory and that generated by goal-directed
planning are examined separately under two conditions: 1) evaluation of a test set using only
3 objects with learned colors; 2) evaluation on a test set using only objects with unlearned
colors. In the first case, test trials for goal-directed planning were conducted with objects
having only known colors. The test was conducted for novel initial object arrangements as
well as goal arrangements using only objects of the three learned colors. In the second case,
the same test trials, but using only objects with novel colors (using augmented data) were
evaluated. We expect that only the model with two VWMs is capable of handling the second
test case successfully, as we have explored previously in the descriptive evaluation.

The conducted evaluations confirmed our expectations, as can be seen in [Figure 7. Each
plot in this figure shows how the mean square error in test trials changes as the training
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epoch increases for each test condition.

show the results in the vision channel for three models in the case of using
objects with the 3 learned colors and the one using objects with novel colors, respectively.
show the same for the proprioception channel for cases with 3 learned colors and
with novel colors, respectively. It can be seen that the error decreased during the training
epochs, except for the vision channel computed in cases using no visual working memory
model and one visual working memory model in the period from epoch 2500 to epoch 4500.
Comparison of the performance of the models on the test set that includes only learned
colors ([Figure 7a & [7d)) shows that the models incorporating at least one VWM show similar
performance in case a moderate generalization is required. Further, this shows that the
generalization performance of the proposed extended model is not hindered by its increased
complexity. Most importantly, at the end of training at epoch 4500, both errors in the vision
and proprioceptive channels in the model with two visual working memory modules and in
cases in which strong generalization is required (Figure 7b & [7e) are significantly smaller
than in the model using one visual working memory module. Comparison of the performance
in a[Figure 7c and |Figure 71 show a pairwise significance analysis of the reconstruction error
of the visual channel and the proprioceptive channel, respectively, on the test data set. It
can also be seen that test errors at the end of training for the case using no visual working
memory model are significantly larger the those observed with the other two models.

These results confirm that models using visual working memory outperform the one with
no visual working memory whenever strong generalization is required. A the same time,
the results show that the generalization performance dos not suffer from an increased model
complexity in case only moderate generalization is required. Moreover, the model with two
visual working memory modules, VWM-1 and VWM-2, outperforms the one using only
VWNM-1 in the goal-directed planning task, which requires generalization for novel situations
dealing with objects with novel colors.

5. Discussion

This study investigated a certain class of generalization problems involving context-
agnostic information processing, which both humans and artificial agents encounter in routine
action generation, by conducting synthetic neurorobotic experiments in simulation. More
specifically, we examined how robots are able to generate goal-directed action plans in object
manipulation by learning even with unfamiliar objects having novel features such as color,
by adequately generating sequential mental images for manipulating them.

For this purpose, we revisited our previous study (Jung et al., 2019) and conducted
extended simulation experiments. The current study used a complex network with synergy
between a set of sub-module neural networks, including multiple visual working memory
modules (VWMs), a visual attention module, an executive network for prediction of motor
and visual images, and controls for visual attention and masking of the visual images in
the VWMs. One essential update from the previous model (Jung et al., 2019)) is that the
current model employs an additional VWM and considers further connectivity between this
module and others. This is to evaluate our main hypothesis that generalization required for
content-agnostic information processing can be achieved if the whole network can adequately
incorporate this additional VWM via interactions through learning from past experience.
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Figure 7: Discrepancy error between the inferred plan and the ground truth in two cases, namely dealing

with objects with learned colors and one with novel colors.

Authors: Figure description is corrected.The

visual channel (a-c) and proprioceptive channel (d-f) are evaluated separately. Evaluation in the test with
learned objects and novel objects is shown in addition to the pairwise evaluation of the significance at the end
of training (4500 epochs). Models without visual working memory, with one visual working memory module
(VWM-1), and with two visual working memory modules (VWM-1 & VWM-2) memory are compared.
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Learning of the whole network is accomplished by means of free energy minimization (Friston),
2005)) by following the predictive coding formula (Mesulam, [1998; Rao & Ballard, 1999) in
end-to-end learning of sampled visuo-proprioceptive trajectories.

After learning, we evaluated the performance of the model network in generating goal-
directed action plans using active inference (Friston et all 2006), in cases that involved
manipulating blocks with novel colors. The results showed a significant improvement in
performance when using an additional VWM, compared to a case using only a single VWM.
A detailed analysis of whole network activity first revealed that when the robot grasps a
block to move it, visual attention follows the block autonomously while static blocks behind
a manipulated block are retained in the first VWM. This is the same as observations in
Jung et al. (2019). More interestingly, the attended visual image of the grasped object was
copied into the newly introduced VWM, and it was spatially transformed to generate image
sequences of stacking objects by following the generated visual plan. This phenomenon was
observed during manipulation not only for blocks with learned colors, but also for blocks
with previously unseen colors.

The aforementioned analytical result reveals how content-agnostic information processing
was developed in the course of learning while dealing with generalization for mental simula-
tion of objects with novel colors. The essential aspect of the mechanism acquired through
learning is dissociation of visual image contents from the mechanism for their manipula-
tion. In the model after learning, an image of the object to be manipulated is saved once in
VWM-2. Then, to achieve a specified goal, the image is transformed by means of temporal
mapping of each pixel position in the visual coordinate of VWMS-2 as controlled by RNNs in
the executive network. By this means, an image once saved in VWM-2 can be transformed
regardless of its content, because transformation is conducted with the position of each pixel,
independent of the content (RGB information) saved at each pixel. However, without VWM-
2, this sort of dissociation cannot be achieved and generalization for unlearned object images
cannot be expected, since RNNs alone cannot generate transformation of novel object images
in a content-agnostic way.

The experimental design as presented in aims at specific cases of the gener-
alization problem that involve noisy real world data, manipulating objects with unlearned
locational distributions, compositionality through planning for unlearned tower configura-
tions and representation of objects with unlearned colors.

These experiments show that strong generalization can be achieved and that content-
agnostic information processing of color information is developed in the model during train-
ing. To further support our hypothesis of content-agnostic information processing through
utilization of an additional VWM (VWM-2), as illustrated in [Figure 6 we conducted addi-
tional experiments involving more complex visual representations. In [Appendix G| results
of additional experiments that require content-agnostic processing of objects with unlearned
textures are shown. For these experiments we rearranged the task scenario as described in
and restricted task complexity to maximize the size of objects in relation to image
resolution. Further details of experimental conditions are listed in [Appendix Appendix Gl
A modification of the task scenario was necessary to reduce computational resource require-
ments by limiting the number of training samples and reducing the sequence lengths.

The quantitative and qualitative analysis of the additional experimental results support
our previously stated hypothesis of content-agnostic visual processing and show that our
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newly proposed model with two VWMs achieves superior generalization in generating goal-
directed visuo-motor plans dealing with objects with previously unseen textures. As shown
in the example visualizing internal neural activities of the model , it turned
out that the ways of using two VWMs are compatible to those shown in the main experiment
described in section [Section 41

A future study should examine how the current scheme of content-agnostic information
processing using an additional VWM (VWM-2) can be applied to generalization in learning
with more complex situations, such as manipulating objects with novel shapes and sizes.
Generalization with different shapes and sizes of the objects is expected to be more chal-
lenging, because such situations obviously will involve adaptation of motor controls if those
variations affect the means of manipulating those objects. This is not only a problem of
context-agnostic information processing in the visual pathway, but should involve gener-
alization problems in the motor pathway. This issue will be examined with deliberative
experiments in the future.

Problems involving moving objects and dynamically changing environments are not ad-
dressed in the current study, which assumed that goal-directed plan generation is performed
only in a static environment. If distractor objects move, such situations can be resolved if
the model network can learn to ignore those objects. This could be achieved even with the
current model if the visual attention module functions adequately. If objects to be manip-
ulated move, this situation can also be resolved if the model network can learn to predict
how the objects move. These examinations are left for future studies.

Although the current study showed that the proposed neural network architecture using
two VWMs exhibited competitive performance in terms of the discrepancy between inferred
plan trajectories and ground truth trajectories, our preliminary study showed that the success
rate of each task by executing the inferred motor plans with a real robot could not exceed
50%. The resultant low performance is due to the fact that relatively low pixel resolution
(64x64) in the video image was used in the current experiment, because of the excessive
computational cost for inference through video frames. A one-pixel prediction error in the
size of an object image could result in up to a 5-cm position error of the robot gripper when
grasping objects, a huge error considering the 5-cm block size. Future studies introducing
depth information, as well as larger image resolution, such as 256x256 in the video, along with
development of an effective parallelization scheme in inference of plan generation through
the video frames, should improve the success rate greatly.

Furthermore, extended studies should investigate how the model could deal with the
problem of online planning in a physical setting. This should require the model to adapt
to dynamically changing environments in real time. For this purpose, the model should be
extended such that it can cope with the following three issues. First, the robot should be
able to recognize the current situation by maximizing the evidence lower bound. Second,
it should be able to update current goal-directed plans based on its currently recognized
situation by maximizing the estimated lower bound. Third, it should be able to act on
the environment by executing a plan to be carried out in real time. The retrospective and
prospective inference scheme (REPRISE) proposed and investigated by |Butz et al.| (2019)
represents a good starting point to consider this problem.
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Appendix A. Implementation Details of Attention Transformer

Implementation of the attention transformer ATT is based on a spatial transformer net-
work (STN; | Jaderberg et al.2015). The STN performs a pixel-wise spatial transformation of

an input image with the same transformation performed for each color-channel. The trans-

f(zs,[0d a8, a2t]) .
defining a vector
(wilo'f 0% 0dt])) |7 &

field that maps transformed image coordinates G; = (x;,y;) of a regular grid G = {G,}
to the input space. A regular grid of 2D pixel positions in the output image is mapped
by application of Taate to its corresponding input positions before a bilinear differentiable
sampling kernel, as in|Jaderberg et al| (2015)), is applied. The inverse transformation ATT~*
is performed by application of T att and simultaneous rescaling is achieved by adapting the

formation is defined by a grid generator Tqau(G;i) = [ ;

dimensionality of the regular grld that is used for the sampling process accordingly. Map-
ping of pixel coordinates is performed in such a way that a combined representation of
dorsal and ventral image information is possible, as illustrated in [Figure A.8 Independent
projections of pixel coordinates for each image dimension are based on a mixture of linear
transformations [; to l3, as described by:

f(z,0) =0ca(x,0)l; + op(x,0)ls + (1 — 04(z,0) — 0p(z,0))l3 (A1)

The interpolation by o; and o, between the focal and peripheral magnification levels is
defined as

oa(z,0) =0((1 —0)0; —x) and :
O'B(JI, 9) = O'(J? - (91 + 02 - 8192)), (A3)

with @ € R?® defining the transformation along each image dimension independently: 6,
defines the center of the focal area, 6, defines the relative size of the focal area, and 1/s,
determines the zoom factor inside the focal area. The interpolation can be based on a
sigmoidal or a Heaviside step function. The linear transformations /; to I3 are defined as:

x(@l — (919203))

h= =G (A4)

.%'—91 — (1 —91>92

e A.

lp=(1—01—(1—061)0:05) 1—6; — (1 —6,)6, A9
£0,+ (1— 0,005 and (A.6)

ls = (x — 0,)05 + 0. (A7)

In applying the Heaviside step function, the back transformation ’T ane CAN be estimated
trivially by the partial inverse of the linear functions. In applying a 81gm01dal transition
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Figure A.8: Visualization of the spatial transformer for fovea-like visual attention. The grid transformer
Taa (G) and its inverse are based on (a) the transformation f(0). (b) depicts an illustration of the pixel
wise mapping (i) between output and input image panels and the successive sampling (ii) of pixel data. An
example result of the described image transformation is shown in (c).

between the linear functions, we refer to an approximate inverse function estimation, if an
analytical solution cannot be found. In this case, the inverse transformation is described by
the following equation:

FH0) =01 (0)7" + 05" (0)y" + (1 —047(0) —05'(0))l5 ", (A.8)

with
0,1 (0) = a((1 —6,03)0, —z) and (A.9)
0';1(0) = 0'(1[) — (91 + 9293 — 019293))) (AlO)

Appendix B. Implementation Details of Visual Loss Function

Our previous studies showed that back-propagated visual error signals suffer from over-
representation of the focal area caused by the variable pixel densities of the attention trans-
formation. To balance the contribution of the visual errors that originate in the focused
and unfocused regions of the generated visual output of the model, s?** was introduced to
perform a scaling of the error signal with respect to the distance to the center of the focal

area. The estimation of s is performed by the following calculations:

X Qatt i/N. 2
-] 15

for image resolution (Nj,, Nj,) in order to scale the visual error signal in relation to the
distance to the center of the focal region.
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Appendix D. Example Sequences of Robotic Data Sets
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Figure D.9: Example sequences of the robotic dataset. Three colored cubes (red, green and blue) are in the
recorded dataset. Positioning of the blocks in the workspace is based on a 10x10 grid for training and an
8x8 grid for testing. Permutation of the stacking order results in six final tower configurations (RGB, RBG,
GBR, GRB, BGR and BRG), whereas the last two configurations (BGR and BRG) are excluded from the
training set.

Appendix C. Training & Planning Procedure

Training and planning are performed according to the pseudocode in and
respectively.

Algorithm 2: Planning procedure

Algorithm 1: Training procedure

1 initialization (posterior):
1 initialization (prior and posterior): 2 (ud,09) = ¢9 < 0 Vg € Diegs;
2 (po,00) = 6 < (0,1); 3 for g < 1 to Nygmpies do
3 (Hg,o'g) = @9 < 0 Vg € Dirain; 4 for e <~ 1 to Nepoens do
4 for e+ 1 to Nepochs do 5 for r < 1 to N,y,s = 16 do
5 for g < 1 to Nyumpies do 6 sampling:
6 sampling: 7 sg — pd +eoof;
7 s) Ky + €0 of; 8 generation:
8 generation: 9 (v9,m9) «
9 (v9,mY) « FWD((v{,m{), s}, Wnet);
FWD((vo?, mo?),s§, Wnet); 10 loss calculation:
10 loss calculation: 11 7+ Ly(v9,m9, ¢, 0);
11 lg < LI(v9,mY, ¢, 0); 12 end
12 gradient descent: 13 gradient descent (best run):
13 (Wnet, 0, ¢9) < 14 Thest < argminly;
Adam (0w, lg, Oplg, Opaly); r
14 end 15 @9 « Adam(0pali,..,);
15 end 16 end
17 end
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Figure D.10: Example sequences of the augmented robotic dataset. Random permutations in the color planes
of the original dataset result in block colors not present in the training set. The dataset used
to evaluate model performance in cases of strong generalization is required, since typically, representation of
previously unseen objects is challenging for RNNs.

Appendix E. Comparison with Previous Models

shows two examples in which the current model without VWM-2 fails to
generate correct visuomotor plans as the color information was lost. In the first example,
[Figure E.1Ta] the color information of the blocks is lost and block colors converge, i.e.,
the orange color of the manipulated object is replaced by red. Nevertheless, the generated
trajectory still achieves reasonable accuracy as block positions are approached in the correct
order.

The second example shows an inferred plan that loses the correct color information,
i.e., a peach-colored manipulated block becomes green, as shown in time-steps 8 to 48 of
[Figure E.11b(iv)l The lost color information results in confusion of the order of the stacking
operations, and results in a large discrepancy in vision and proprioception channels between
the inferred plan and the ground truth. As shown in [Figure E.11b(i)| the discrepancy in the
proprioceptive channel is high when an object is picked from the table (around time-steps
16 and 64) and is low (neglecting variability in the timing of actuation of the gripper) while
placing the objects in a tower configuration (around time-steps 40 and 88). The above-
mentioned fluctuation of the discrepancy between the inferred plan and the ground truth is
caused by a plan that still succeeds in building a tower configuration at the position specified
by the current goal, but confuses the color information and the order of two consecutively
manipulated blocks.

Appendix F. Explicitly Decomposed Representation

This section presents an evaluation of our current approach versus previous models that
utilize dorsal and ventral visual streams (Jung et al.| 2019)). [Figure F.12|depicts a comparison
of the internal visual representations in the convolutional RNN blocks and the final visual
prediction for one successful goal-directed action plan. Three model architectures are com-
pared: the previous model with two visual streams (Figure F.12al), our newly proposed model
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Figure E.11: Visualization of failed planning attempts, as observed in a model with only one visual working
memory VWM-1. (a) and (b) show such two examples. The RNN is not able to generalize to new colors and
loses color information during manipulation of the blocks. The loss in color information results in confusion
of the stacking order, as evidenced by a high prediction error of the proprioceptive modality.
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that utilizes only one visual stream, and one VWM , and our proposed model
including two VWMs . When two visual streams are utilized, as shown in
the color information of all blocks is represented simultaneously in the generated
output of the convolutional RNN blocks of the peripheral and ventral pathways of the model.
This means that not only the currently modified object can be identified, but also the other
objects that are not relevant to the currently ongoing sub-task. This indicates that RNN
blocks represent the complete task configuration throughout all layers. In comparison, the
organization of the model architecture into one unified visual stream, shown in [Figure F.12D]
results in a more explicitly decomposed representation. In this case, the background and
the unmodified objects are represented in VWM-1 and the higher-level vision network rep-
resents only images related to the currently ongoing sub-task. |[Figure F.12b(ii.1)| depicts the
visual representation of the scene after placing the blue block on the green block. In this
case, predictions in the attended visual image are solely based on generated images of the
RNN, as VWM-2 is not available in this experiment. Only color information of the currently
manipulated blue block is represented in the visual predictions of the convolutional RNN
block. Moreover, the model retains an abstracted representation of the remaining blocks
in the form of an uncolored image. The results indicate that the current model is able to
learn a more abstracted and compositional representation of the training data by restriction
of representations to sub-task-specific information. In this case, the model represents the
action of stacking a specific block (color information available) on top of an arbitrary block
(no color information available).

The whole image is decomposed into the representation of the currently manipulated
and other objects as background by using only the architecture of the unified visual stream
shown in [Figure F.12b.] This is more successfully performed by adding VWM-2 into the
unified visual stream architecture, shown in in which color information of the
currently manipulated object is more explicitly extracted by the RNN as compared to the

experiment shown in [Figure F.12b.
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Figure F.12: Comparison of visual representations in RNN blocks for a successfully inferred plan in three
different models. (a) shows predictions of the previous model (Jung et al| (2019)) that are limited to use
of one type of memory and proposes two visual channels, peripheral (a.ii) and central (a.iii) vision; (b)
shows predictions of the current model without VWM-2; and (c) shows predictions of the current model
including both VWM-1 and VWM-2. Unification of the visual stream leads to an explicit representation of
the manipulated object by the recurrent neural network, as other objects in the scene are not represented

by color.




Appendix G. Experiment: Content-Agnostic Information Processing for Gen-
eralization for Unlearned Textures

The purpose of an additional experiment shown in this section is to examine whether
content-agnostic information processing developed in the model could account for general-
ization with a different novel situation, objects with unlearned texture patterns.

For this experiment, a modified task scenario has been designed. In comparison with
experiments presented in the scenario has been redesigned such that the camera
is positioned closer to the workspace of the robot in order to maximize the numbers of pixels
of the visual sensation that are occupied by objects in the scene. The enlarged appear-
ance of the objects in the visual image (approx. 12x12 pixels) allows the representation of
complex patterns (textures) that are mapped on the objects in the lower-dimensional image
computed through the attention transformation, i.e. the visual feature space of VWM-2
and convLSTM. In the following, the experiment design and the experimental result are
described.

Appendiz G.1. Task Design and Generation of Training Data

These experiments have been performed in simulation of the Torobo robot. As in the
previous experiments, sequences of object manipulations are recorded. Given an initial pos-
ture of the robot, the robot is commanded to generate the following sequence of movements:
1) it reaches a specific target object; 2) grasps the object; 3) moves the object to a specific
target location; 4) releases the object; 5) moves back to the final posture. The design of
the task is depicted in [Figure G.13al Recording of the sequences has been automated and
trajectory generation ensures that the final length of the sequence is 33 time-steps in every
case. In total, 250 training sequences and 80 sequences for testing have been recorded. Four
example sequences used for training are visualized in [Figure G.13fl As for our previously
discussed experiment, initial object locations are sampled from two different distributions,
one for training and one for planning. The desired placement position of the target object,
as indicated by a black square, was moved along its y coordinate on the table and kept
inside the workspace of the robot. In addition to the colors red (r), green (g) and blue (b),
two texture patterns have been mapped onto the objects in the scene during generation of
the training dataset. The possible appearances of the objects in the training set are listed
in . For generation of the test data set, the colors cyan (c), yellow (y) and
pink (p), as well as textures showing cross and triangle patterns have been mapped onto the
objects. The unlearned colors and textures in the test dataset are depicted in [Figure G.13c|
In both cases, up to two randomly selected distractor objects have been placed at randomly
selected positions, such that they do not interfere with movements of the robot. In addition
to cubes, we introduced two additional object shapes (a cylinder and a triangular bar) as
distractor objects, as shown in [Figure G.13d| and |[Figure G.13€|

Appendiz G.2. Ezperiment

Training is conducted analogously to the previous experiment described in [Section 4]
After minimizing the loss function LY for all training sequences for 4000 epochs,
generalization in action plan generation to achieve novel goal states specified by the visual
images is evaluated. Action plan generation to achieve novel goals dealing with variable

42



Sequence Number

Figure G.13: Task design (a), the robot moves a block (with previously unseen color, texture & position)
onto a desired target plane (indicated by black square). Visualization of the variability of the appearance of
the objects is shown in (b-e): training set (b); new appearances during planning (c); disturbance objects for
training (d) and planning (e) include further object shapes for assessment of generalization capabilities for
previously unseen backgrounds. Example visual sequences of the training set are shown in (c).
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positions both for the initial and the final object positions is performed using the same
planning scheme described in The inference for the goal-directed planning is
iterated for 100 epochs.

From repeated simulation results, we found that performance of goal-directed plan gener-
ation using novel texture objects is significantly better when using two VWMS compared to
the case with one VWM. The model with two VWMSs results in significantly lower planning
loss LJ over all test sequences g, Its mean is 0.0174+0.0010, in comparison to 0.0244+0.0018
for the model with only one VWM (p>0.95). As expected, the difference in the mean squared
error between both models is significant (p>0.95) as well, with error 0.00404+0.0002 for the
model with two VWMSs and 0.004840.0003 when only one VWM is utilized. The mean
squared error in proprioception is slightly lower (not statistically significant) in the model
with two VWMs, 0.84+0.07 [deg?], in comparison with the model with only one VWM,
0.95+0.10 [deg?].

igure G.14] shows some example results of goal-directed planning using objects with
novel texture patterns in cases involving the model with two VWMs and that with one
VWM. shows an example of successful goal-directed plan generation using the
model with two VWMs wherein the contents of masked VWM-2, VWM-1, the inferred visual
plan, and its grand truth are shown. We can see content-agnostic (pixel-wise) transfer of the
visual appearance of objects which is analogous to that described in [Section 4.3.3] In this
figure, an empty red square denotes the focus area of the attention transformer and an empty
black square denotes the goal position to which the object should be moved.
shows other three representative examples of inferred visual plans generated by the current
model using two VWMSs. It shows that the model can deal with different types of novel
texture objects. shows two representative examples of inferred plans generated
by the model using only one VWM. Objects with novel textures cannot be manipulated well
in the generated visual pan image. Both cases show that texture patterns of the objects are
changed incorrectly during manipulation of those objects in the inferred plans.

In summary, only the model with two VWMSs is capable of representing manipulation of
objects with previously unseen textures by copying their visual images into VWM-2 and by
pixel-wise transformations of this memory. These results support our claim that content-
agnostic information processing developed in the model can enhance generalization in dealing
with novel situations, including cases of manipulating objects with novel textures as well as
with novel colors.
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of the internal states of the newly proposed model (two VWMSs) is shown in (a), further exemplary visual
predictions are depicted in (b). Failed planning attempts of the model limited to only one VWM are shown
in (c). An empty red square depicts the focus area of the attention transformer, as predicted by the model
and an empty black square depicts the goal position where the object should be moved. An animation of
the internal states is available online at https://youtu.be/frpl Utxx-XA|
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