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Abstract—We propose to make the physical characteristics
of a robot oscillate while it learns to improve its behavioral
performance. We consider quantities such as mass, actuator
strength, and size that are usually fixed in a robot, and show that
when those quantities oscillate at the beginning of the learning
process on a simulated 2D soft robot, the performance on a
locomotion task can be significantly improved. We investigate
the dynamics of the phenomenon and conclude that in our case,
surprisingly, a high-frequency oscillation with a large amplitude
for a large portion of the learning duration leads to the highest
performance benefits. Furthermore, we show that morphological
wobbling significantly increases exploration of the search space.

Index Terms—robots, developmental learning, embodiment

I. INTRODUCTION

Most robots used today have a fixed morphology. The length
of their limbs, the strength of their actuators, the mass of their
parts are decided during their design and fixed thereafter. In
that respect, most robots are similar to adult humans. And
since adult humans can acquire skills, can learn, it appears
reasonable to expect that a fixed-morphology robot, given
sophisticated-enough programming, should be perfectly suited
to learn as well. Yet, it’s difficult to fail to notice that humans
acquire the most skills at a time when their morphology is
not fixed: during their childhood. It is tempting to argue that
skill acquisition is at its peak during childhood by necessity:
babies, after all, have many things to learn. Morphological
development happening at this time would be a coincidence
driven by physiological constraints, and in fact would probably
impede the pace of skill acquisition. This traditional view is
opposed by another theory that has accumulated theoretical
and empirical support: that morphological development cru-
cially guides and helps skill acquisition in humans and animals
(Jayaraman and Smith, 2020; Thelen et al., 1984). For robots,
this is one of the issues at the heart of developmental robotics
(Lungarella et al., 2003; Cangelosi, 2015), and the one this
study explores: can a robot whose morphology changes see
its learning performance improved over a fixed-morphology
one?

Here we are also deliberately exploring a non-biologically
plausible scenario. In particular, we are not going to make
a robot’s morphology grow from a baby body into an adult
one. We explored this idea—in the context of evolutionary
robotics—in a previous study (Benureau and Tani, 2022).
Other studies have explored this as well (Naya-Varela et al.,
2020a,b), and the conclusion is that growing up can make a
robot learn better. Designing a robot that grows, however, is
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far from trivial. Besides the many technical difficulties this
represents, even choosing how it should grow is a tough prob-
lem, especially as knowledge on that issue is scarce. It may
necessitate essentially designing several different robots for
each of the stages (e.g., infant/kid/adult) and ways for the robot
to transition from one to the other if development is gradual.
All this conspires to make morphological development too
hard and costly in many cases to actually use it in robots.
Here, we explore a simpler alternative. Rather than growing
our robots like animals, we wobble the morphology of a robot
around its adult shape; we apply, with each passing learning
epoch, a sinusoidal perturbation of the morphological values
of a robot such as its size, its mass, or actuator strength. By
exploring this biologically-removed idea, we can also hope
to illuminate the role of morphological growth in animals.
Specifically here, we are asking an implicit question: for
learning purposes, does an animal morphology needs to grow
or merely change?

The idea of perturbating the target task or environment is not
new and one example is Jakobi’s minimal simulation approach
(Jakobi, 1997, 1998). The method advocates making any non-
task-related part of a simulation noisy, with the objective to
make the discovered behaviors robust enough to experimental
dimensions not crucial to the task so the robot can hopefully
bridge the reality gap (Koos et al.,, 2013). In comparison
to this approach, morphological wobbling targets dimensions
a priori deeply entangled with the task, such as the robot
size or motor strength; it modifies the morphology away from
the target one. It may seem, at first sight, an obstacle rather
than a learning help. This is similar to the approach taken
by Robust Reinforcement Learning (Morimoto and Doya,
2005; Pinto et al., 2017; Tobin et al., 2017; Peng et al.,
2018), where adversarial perturbations are made to a model
to make it robust to changes to inaccuracies in the model or
to bridge the reality gap. Yet, morphological wobbling assumes
that we have access to a perfect version of the robot and
environment—no uncertainty or reality gap is present—and
yet solely focusing training on that target environment leads
to subpar performance.

Growing robots or morphologically developing robots
(Naya-Varela et al., 2021) is a subject that is still relatively
niche, with the majority of the studies focused on the inde-
terminate growth of plant-like robots (Dottore et al., 2018;
Corucci et al., 2017).

A study (Lungarella and Berthouze, 2002) has specifically
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looked into how a nonlinear perturbation of a 12 DOFs robot
affects performance when present or absent. They concluded,
however, that its presence led to lower performance. This is
also the conclusion of (Bongard, 2011) when adding mor-
phological development in between trials to a locomotion
acquisition task. The solution for that study was to add
morphological development during behavior (during a trial), a
technique that is used in a number of other studies (Kriegman
etal., 2017, 2018a,b; Bongard, 2011; Corucci, 2016). Contrary
to those studies, morphological wobbling does not change the
morphology during a trial or learning epoch, only in between.
In recent studies, (Naya-Varela et al.,, 2020a) and (Naya-
Varela et al., 2020b) looked into how growth and gradual
increase in range of motion affected learning in quadruped,
hexapods, and octopods. In (Benureau and Tani, 2022) we
looked into how growth, i.e., increase in size, mass, or muscle
strength (or all three combined) can affect learning in 2D and
3D soft robots (the 2D ones are the same as this study). In
all three studies, the developmental trajectory starts with a
baby morphology that slowly grows, as learning progresses
towards the adult morphology. All studies were able to show
instances of development outperforming non-development. In
this article, rather than starting with a baby morphology that
one has to design, morphological wobbling starts with the adult
morphology and oscillates its morphological values.

II. METHOD

A. Robot

We consider a simulated 2D soft “starfish” robot, the same
as the one in Benurcau and Tani (2022). The robots are
composed of six tentacles attached to a central body. Every
part of the robot is composed of point masses linked together
by springs. The springs can adopt a wide range of stiffness,
enabling them to simulate rigid and flexible links alike. Some
links allow their resting length to be modified by motor
commands: those are the muscle of the robot.

Each of the six tentacles is made of eight sections, divided
into two motor groups of four sections, as shown in Fig. 1.A.
A section has two actuated springs (muscles) on the side
that act in an antagonistic manner: when one contracts by a
factor 1 — « relative to its resting length, the other extends
by 1 4+ «, bending the section one way or the other. A
section is actuated by setting the value of o equal to a
fixed sinusoidal signal, parametrized by its period, phase and
amplitude (this sinusoidal signal has nothing to do with the
one of morphological wobbling). The period value is shared by
all the sections of the robot and fixed at 27 seconds (it cannot
be modified by learning). Moreover, all sections belonging to
the same motor group receive the same sinusoidal signal. With
two motor groups per tentacle, and six tentacles, that amounts
to 12 motor groups, each needing a value for the phase (in
[—7, 7]) and amplitude (in [0, 0.2]). The controller is therefore
fully specified with a 24-scalar vector.

A.ROBOT DESIGN
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B. MORPHOLOGICAL WOBBLING
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Notice that the size difference creates non-linearities that produce differences in the relative
positions of the tentacles across the three morphologies.

Fig. 1. A. Robots are made of springs and point masses. B. Morphological
wobbling applies a sinus function to chosen morphological characteristics of
the robot for the first half of training.

B. Trial & Error Learning

The task of our robot is to learn how to move. The
performance is the number of body lengths (of the reference
adult size, i.e. fixed, independent of wobbling) the robot is able
to do over 60 seconds. The robot is created above ground
and dropped at the start of the simulation. To avoid having
the robot take advantage of the kinetic energy of the drop to
bounce, which experimentally results in chaotic performance,
it settles on the ground without actuating for 9.42 seconds
(= 3w, 1.5 periods), then actuates for the remaining 50.58
seconds.

We use a simple learning algorithm: trial & error. At each
epoch, the robot tries 20 different behaviors, i.e., 20 24-scalar
vectors. The five best are kept, and each produces three random
perturbations of itself, generating 15 new behaviors that will,
with the five kept behaviors, form the 20 behaviors of the next
epoch. The robot is trained in this manner for 4000 epochs.

A perturbation is created by selecting two random values
in the 24-scalar vector and—assuming those values are nor-
malized in the interval [0,1] (from the interval [—m, 7] for
a phase value or [0,0.2] for an amplitude value)—adding a
random normal perturbation of variance 0.05 to each of those
values. If the value exceeds the bounds, the excess is mirrored
back into the range.
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A. TWO EXAMPLES OF MASS MORPHOLOGICAL WOBBLING
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Fig. 2. Morphological wobbling improves performance. A. Scatter plots of
the trials of a run for the fixed-morphology and morphological wobbling
conditions. Each dot is a trial. Futhermore, two oscillation conditions are
shown and correspond to the left and right column, and extend to B., which
presents the average of the best trial of each epoch, over 100 runs. The shaded
area is the 99% confidence interval.

C. Morphological Wobbling

Our morphological wobbling consists in changing the mor-
phological characteristics around the values of the adult mor-
phology (see Fig. 1.B). The morphological characteristics we
consider are the mass of the nodes of the robot, the stiffness
of the muscle springs, and the size (the height) of the tentacle
sections. Typically, we apply a sinusoid perturbation of one
of those values during the first 1900 epochs, with a given
amplitude and perturbation. From epoch 1900 to 2000, the
amplitude, whatever its value, is linearly decreased to zero.
From epoch 2000 to 4000, the robot’s morphology is fixed at
the adult morphology values. For simplicity, we normalize all
values so that the adult morphology values of mass, muscle
stiffness, and tentacle section size is 1.0.

It is important to note that the morphology of the robot
does not change during a learning trial or even during a
whole epoch. It remains fixed and is same for all trials. The
morphology changes in-between epochs, during the first 2000
epochs. Another point is that our wobbling trajectory is not
a function of learning performance, and does not change, for
instance, when a performance threshold is reached.

III. RESULTS

Fig. 2 shows the impact of mass morphological wobbling
for two conditions over the fixed-morphology condition. In
Fig. 2.A, two selected runs are shown. We can observe that
the performance during wobbling has a high variance that
correlates with the wobbling oscillation. That is not surprising.

Given similar behaviors, increasing or decreasing the mass
of a robot will usually increase or decrease his locomotion
performance. During wobbling, the performance oscillates at
levels of performance inferior, similar, or superior to the fixed-
morphology performance, with sudden changes to the mean.
After wobbling ends, however, the performance of the wobbled
robot settles to a value much higher than the fixed morphology.

Those results are validated when we look at the average
performance of the best trial of each epoch across 100 runs
in Fig. 2.B. We can see that the performance indeed oscillates
precisely with the wobbling (else, it would get smoothed out
by the average). And the final performance is significantly
higher than the fixed morphology one, up to twice as much
for an amplitude of 0.5 and a 25-epoch period.

Those last parameters represent quite a high amplitude and
a fast period. It is perhaps the most unexpected result of
this study: we assumed that a moderate period and amplitude
would reap the benefit of wobbling while giving the time to
the learning algorithm to adapt. Yet—and this is the point of
the next two sections—performance is generally increased the
higher the amplitude and the shorter the period.

A. Period and Wobbling Pauses

To apply morphological wobbling, we must choose a few
variables for the oscillations: the period, the amplitude, and
how long they last. Let’s start with the period, i.e., how fast the
morphology wobbles. As stated above, we could expect that
a slow wobbling, perhaps even interlaced with some fixed-
morphology “rest” periods, would be best for learning. The
results of Fig. 3.A show it is not the case for our robot.
We consider three conditions across different period values.
The first condition is the regular wobbling around the 1.0
mass value, with an amplitude of 0.1. The second is the same
wobbling, with an upper bound at a value of 1.0; this creates
a fixed value at 1.0 for half of the period. Finally, the third
condition wobbles around a mean of 0.9, with an amplitude
of 0.95 (the fixed value during the second half of learning
is still 1.0). This has the same range as condition 2 without
any fixed-morphology portions. What we observe is that the
period offering the most performance is 25 epochs, rather
than the slower period we expected. A shorter period than
25 does lead to some modest loss of performance, suggesting
that the relative proximity of successive morphologies along
the oscillation range is of some importance. Stopping to
wobble periodically as in condition 2 does not offer any
advantage over condition 3 and has a consistently inferior
mean performance over condition 1. Comparing conditions 1
and 3 further suggests that having the mean of the oscillation
be the value of the target morphology might be important,
but this conclusion is muddled by the difference in amplitude,
especially in light of the results of the next section.

B. Amplitude and Morphological Characteristics

The other crucial parameter of wobbling is its amplitude,
i.e.. how much to wobble? Fig. 3.B shows both the ef-
fect of amplitude and of wobbling different morphological
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A. WOBBLING PERIOD AND PAUSES
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Fig. 3. Robots should wobble for a long time (C.), at high frequency
(A.) high amplitude, regardless of the morphological dimension of wobbling
(B.), and at a wobbling mean inferior or equal to the target morphology
when wobbling mass (D.). Each box-and-whisker represents 100 runs. All
boxplots use the same 100 starting populations (100 same random seeds),
creating paired experiments. This allows to compute significance stars using a
Wilcoxon signed-rank test (paired performances regularly deviate significantly
from normality under Shapiro-Wilk testing). The significance threshold is
0.01. Boxplots show the first and third quantile, with notches for the 99%
confidence interval; whiskers show the minimum and maximum values,
clipped to 1.5 x IQR. Beyond that, outliers are shown as diamonds.

characteristics on performance for a period of 25 epochs.
The performance increases as the amplitude of wobbling
increases, until 0.3. After, further increases in amplitude do not
increase performance significantly. This is again unexpected.
The higher the amplitude, the further away the robot is from
the target, adult morphology. Behaviors that are effective on
a morphology are rarely effective on a highly different one,
with robotic search spaces often dense with non-linearity and
discontinuities. This could easily lead to a situation where a
learning algorithm cannot keep up with the fast-oscillating
environmental changes caused by a changing morphology,
and regularly discard good solutions because half of the
learning time is spent on morphology significantly different
from the target one. Yet, we do not observe this here: a high
amplitude of oscillation is beneficial, and though we observe
diminishing returns, we do not observe any adverse effects of
high amplitudes.

Interestingly, even for qualitatively different forms of mor-
phological wobbling—node mass, muscle stiffness, or size—,
the performance is impacted the same. This non-specificity
of the wobbling is surprising. We would expect that some
morphological characteristics among the ones we considered
would be coupled more tightly to the learning performance
than others.

C. Wobbling Mean

In Fig. 3.D, we quickly explore the effect of different values
of the mean of the wobbling, for mass wobbling. In accordance
with the results of Benureau and Tani (2022), a heavier
average mass during wobbling leads to lower performance,
yet still significantly higher than fixed-morphology learning.
A lighter mass during wobbling does not significantly increase
performance.

D. Wobbling Length

A final major question is: how long should the wobbling
last? Fig. 3.C tells us that even a short wobbling phase of 200
epochs brings a significant learning performance benefit. And
the longer the wobbling phase is, the higher the performance
benefit. This is not a trivial result. Where is that dynamic
coming from? To answer this, we need to start understanding
why morphological wobbling works.

E. Morphological Wobbling Fosters Exploration

Given a task, a robot learns by exploring a behavioral space
and finding behaviors that solve the task as best as possible.
One danger of learning is being trapped in a local extremum of
the behavioral space and spending time improving a specific
solution when better ones exist in other areas of the space.
Such premature convergence is an inevitable risk of any
empirical learning happening in a behavioral space that cannot
be exhaustively explored. Many algorithmic techniques exist
in machine learning to minimize that risk.

Among other things, morphological wobbling can be viewed
as such a technique, specifically an embodied one. Rather
than finding efficient ways to explore a behavioral space,
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morphological wobbling modifies the behavioral space. It is
difficult to stay trapped in a valley of the behavioral space
when the valley disappears under you.

One way to see the relationship between a learning al-
gorithm and a dynamic environment is to see the learning
algorithm as having to constantly play catch up with the
environmental changes. Another is to consider that the en-
vironment pushes the learning process around, especially out
of stable attractors.

Fig. 5 gives us an indication that this is indeed what is hap-
pening here. We initialized a robot with a single behavior. The
robot learns to modify this behavior to improve its locomotion.
In one condition, the robot has a fixed morphology, and in the
other, the robot undergoes morphological wobbling. Since at
each epoch the robot tries new behaviors by modifying the
existing ones, we can measure the number of modifications
that we explored from the initial behavior to the best behavior
of the last epoch. We obtain a search distance as the sum of the
euclidean norm of all these modifications. For a given behavior
b, we define predecessor(b) as the behavior b in the previous
epoch that b was created from, either through replication (the
behavior is one of the five that was kept from the previous
epoch) or random perturbation. We can then build the sequence
of behaviors that led to behavior b, at epoch ¢, from epoch
p (p < @) bp,bpt1,...,by with b; = predecessor(b;y1) for
p<i<q-—1

Given two epochs p and g, we define the search distance
between epochs p and ¢ as the sum of the euclidean norm
between the sequence of behaviors above, starting at the best
performer of epoch g¢:

q—1

> b = biga]

i=p

In the run of Fig. 5.A, the fixed morphology covered a dis-
tance of 6.79 between epochs 1 and 2000 (6.66+£0.84 (99% CI)
over 100 runs); the wobbling robot covered a distance of 60.7
(58.23+1.49 over 100 runs) in the same timeframe. As soon as
the wobbling stops, the search distance drops sharply, to cover
a distance of 1.56 (3.33£0.65) for the wobbling morphology
between epoch 2000 and 4000 versus 0.74 (1.81+0.45) for the
fixed one. Wobbling drives exploration, and we confirm this
by computing the average distance between the best behaviors
of each two consecutive epochs in Fig. 5.B.

An informal observation that can be made from Fig. 5.A
is that the interaction between a morphology that dislodges
learning from the local extremum and learning that gravitates
toward better behaviors does not seem to lead to a stationary
dynamic in the search space. The search does not seem to visit
again and again the same place of the search space, as could
be expected of a repetitive, sinusoidal, perturbation: the search
moves around in the behavioral space, as shown through the
PCA.
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F. Comparison with Perturbation Exploration

Morphological wobbling here seems to generate good, use-
ful exploration. But wouldn’t any other methods that increase
exploration fare as well? One straightforward way to achieve
that is to change how the random perturbations of the con-
trollers are generated. So far, we only changed two values in
the controller 24-length vector, with a normal perturbation of
variance 0.05. In Fig. 4, we explore what happens for other
values of those two parameters, for fixed morphology and
morphological wobbling conditions.
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Fig. 4. Increasing perturbations does not improve performance as much
as development. A. Performance for different values of the number of
perturbations per epoch (variance 0.05), for the fixed morphology (blue)
and morphological wobbling (pink, amplitude 0.2, period 25). The same
conventions as Fig. 3 are used for boxplots. B. Same as A, but varying the
variance of the perturbations (two perturbations per epoch).

While an increased number of perturbations or increased
perturbation variance does improve the performance of the
fixed morphology, in all cases, the performance of correspond-
ing development remains significantly higher (p < 0.001). The
base development condition (amplitude 0.2, period 25, two
perturbations of variance 0.05) also has a significantly higher
performance than all the fixed morphology conditions across
Fig. 4.A and B (p < 0.001). Interestingly the performance of
development dips when the number of perturbations per epoch
is high. Further analysis is needed to understand why.

If we consider morphological wobbling as producing noise
during the learning process, then one thing to remark is that



A. PRINCIPAL COMPONENT ANALYSIS OF THE LEARNING SEARCH
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Fig. 5. Wobbling makes the learning process explore the search space much more. A. Starting from the same initial behavior, we perform a 2D principal
component analysis of the search through the behavioral space. Each behavior except the initial one is derived from another and we can therefore draw a
graph of the behavior. Here we represent only the best behavior of each epoch and its ancestors. The starting point is a large inverted red triangle, the halfway
point (epoch 2000) is a red disk, and the endpoint is a red star. The search distance, as the sum of the euclidean distance between each consecutive behavior
(encoded as a 24-scalar vector), is given between those points for the fixed-morphology and morphological wobbling conditions. The two PCAs are made
independently for each condition (the projection axes are different). B. We confirm that the exploration dynamics are shared over the 100 runs. We show the
moving average of the epoch perturbation distance (the euclidean distance from the best behavior genotype vector from one epoch to the next) over 100 runs
and a 101-epoch smoothing window.
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this noise in intrinsically specific to the task and the robot.
The interaction of the morphology with the world creates
the behavioral landscape, and thus changing the morphology
creates a task-specific, environment-computed noise signal.
Increasing perturbations, on the other hand, creates a task-
agnostic source of noise, divorced from the environment and
task. This hints at a reason for the difference in performance
observed here. Yet, a comprehensive explanation of why
morphological wobbling generates useful exploration pattern
remains, at this point, elusive.

IV. DISCUSSION

There are many limitations to the current study. We have
only one type of robot, the robots are in 2D, in simulation,
the task is locomotion on a perfectly flat surface, there are no
sensors, no neural networks. They all warrant further study
and expanding the work to figure out how much, if at all, this
result generalizes to different robots, tasks, and environments.

There’s one aspect that warrants an extended discussion:
the fixed morphology converges quickly, as is evidenced in
Fig. 2.A. This fast convergence is probably a reason why
a short period and therefore fast oscillations produce good
results in this study. It could lead to the conclusion that
morphological wobbling is effective here because it prevents
the premature convergence of a crude trial-and-error learning
algorithm; in contrast, more sophisticated learning algorithms,
not susceptible to such a premature convergence, would not
get any benefit from morphological wobbling.

It’s a valid point. Except that premature convergence can
befall even sophisticated learning algorithms, and that the
additional help of morphological wobbling, although not use-
ful in many situations and tasks, might be crucial in some
others. But a better justification here is to argue that this
quick convergence of the task may actually capture some of
the dynamics at play in the biological world.

Indeed, there is evidence that a simple trial and error
algorithm may suffice to acquire new sensorimotor skills in
biology, simply because the search space has a lot of good
solutions, and we may be able to converge on one of them
quickly, wherever our starting point is (Raphael et al., 2010;
Loeb, 2012). Quickly finding a good-enough solution to a
problem is useful for survival in the animal kingdom. Yet it
could prevent finding a better solution that might represent
a negative selection pressure over time, especially if other
members of the population discover it. Here, morphological
change, i.e. physical growth, may help improve over time
a behavior that converged quickly. We would have both
advantages: a fast convergence toward a useful behavior in
early childhood and a high-performing behavior by the time
the animal reaches adulthood.

In this work, we chose to apply a sinusoidal oscillation to
the morphology value. The main reason behind that choice
among other possible oscillation types was its simplicity.
There’s an interesting parallel to make between our work
and the field of adaptive control, where convergence can be
guaranteed if a persistently excitatory signal is present, with

sinus being often used as such a signal (Boyd and Sastry, 1986;
Lee et al., 2015). Exploring in future studies which theoretical
tools and insights from that field could be adapted and applied
to our case might be a fruitful avenue of research.

Another point to discuss is morphological wobbling practi-
cal implementation difficulties. Designing a robot that changes
its morphology is complicated and runs contrary to many of
the other engineering constraints of robot design. Furthermore,
designing developmental paths for growing robots from baby
to adults, as we have done in Benureau and Tani (2022), is
far from trivial, and may sometime present a difficulty equal
or superior to the design of the robot itself. Morphological
wobbling removes some of those difficulties, since the mor-
phology deviates around the adult values in a straightforwardly
controlled manner. Many of our experiments have dealt with
changing the mass of our robots. In simulation, this can be
achieved directly. Even more simply, a similar effect can be
achieved by wobbling the gravity of the simulation, which
amounts to changing the value of a single vector, and removes
the need to recompute inertia matrices. With real robots,
changing gravity is not possible and modifying the mass—
or the size—can be challenging or impossible. A simple
intervention, however, is to change the motor strength by
modifying the max torque for instance or by using specialized
actuators (Vu et al, 2013). In all those cases, setting the
amplitude appropriately provides a direct way to constrain the
wobbling within the physical limits of the robot. Thus, with
only a handful of parameters to consider—period, amplitude,
duration—wobbling the motors’ torque is a straightforward
way to implement morphological wobbling in a real robot.

CONCLUSION

We presented morphological wobbling and showed that de-
liberately applying a sinusoidal perturbation to the morphology
of a robot can increase its learning performance. We showed
that, surprisingly, in our case study, a high frequency and high
amplitude perturbation applied for a high number of epochs
provided the best results. We analyzed how exploration was
affected by morphological wobbling, showing that the distance
covered in the search space increased significantly during the
oscillations.

A lot of work remains to investigate how successful mor-
phological wobbling can be for different learning robots and
across environments and tasks. Whether it proves to be widely
applicable or only applicable to a handful of cases, such
as our 2D robots, even a failure would be interesting as it
illuminates the relationship between development and learning.
If morphological wobbling improves the performance of some
robots but not others, understanding why may yield precious
insights into how development affects us.
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SUPPLEMENTARY DATA AND SOURCE CODE

The supplementary data containing necessary simulation
details, along with the source code and full simulation records
to reproduce the results, regenerate the plots, and recompute
the numerical figures (distances, confidence interval, signif-
icance, explained variation of PCA) is available at: https:
//doi.org/10.5281/zenodo.6513360.
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