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It is widely thought that in steady, gravity-driven, unobstructed soap-film flows, the velocity increases

monotonically downstream. Here we show experimentally that the velocity increases, peaks, drops

abruptly, then lessens gradually downstream. We argue theoretically and verify experimentally that the

abrupt drop in velocity corresponds to a Marangoni shock, a type of shock related to the elasticity of the

film. Marangoni shocks induce locally intense turbulent fluctuations and may help elucidate the

mechanisms that produce two-dimensional turbulence away from boundaries.

DOI: 10.1103/PhysRevLett.103.104501 PACS numbers: 47.55.dk, 47.40.�x, 68.15.+e

Soap-film flows [1] have long been used to study two-
dimensional (2D) turbulence, a type of turbulence that
differs from its three-dimensional (3D) counterpart in cru-
cial respects. For example, in 3D turbulence the energy
may cascade only from larger to smaller length scales,
whereas in 2D turbulence the energy may cascade in either
direction [2]. Disparate directions of energy transfer result
in disparate apportionings of the turbulent kinetic energy
among the length scales of the flow [2]. Besides the theo-
retical interest inherent in its distinctive characteristics, 2D
turbulence is relevant to the large-scale irregularities en-
countered in 2D atmospheric flows—flows that are con-
fined to two dimensions by geostrophic forces and a
stratified atmosphere [3]. Examples of large-scale irregu-
larities in 2D atmospheric flows include hurricanes, ty-
phoons, and the great red spot of Jupiter [4].

In the typical setup used to study soap-film flows [5] a
film hangs between two long, vertical, mutually parallel
wires a few centimeters apart from one another. Driven by
gravity, a steady vertical flow soon becomes established
within the film (Fig. 1). Then, the thickness h of the film is
roughly uniform on any cross section of the flow [6], and
wewrite h ¼ hðxÞ, where x runs along the center line of the
flow (Fig. 1). In a typical flow h � 10 �m, much smaller
than both the width w and the length L of the flow (Fig. 1).
As a result, the velocity of the flow lies on the plane of the
film, and the flow is 2D. Since the viscous stresses (and the
attendant velocity gradients) are confined close to the
wires, the mean (time-averaged) velocity u is roughly
uniform on any cross section of the film [7], and we write
u ¼ uðxÞ. Thus, assuming incompressibility, hðxÞuðxÞ
equals the flux q per unit width of film and is independent
of x for a steady flow.

Analyses of steady flows have accounted for the gravi-
tational force, the inertial force, the drag force of the
ambient air, and the drag force of the wires. Rutgers
et al. [7] have shown that the drag force of the wires is
negligible as compared to the drag force of the ambient air
and may be dropped from the equation of momentum

balance. Then, a prediction can be made that in a steady
flow the mean velocity is a monotonically increasing func-
tion of x and approaches a terminal velocity asymptotically
downstream [6,7]. This prediction has not been tested, but
it is thought to be in qualitative agreement with the few
known experiments [6,7]. In contrast to this prediction, in
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FIG. 1. Typical setup used to study steady, gravity-driven,
unobstructed soap-film flows. Axis x runs vertically along the
center line of the flow. Wires WL and WR are thin nylon-fishing
lines kept taut by weight W. The film hangs from the wires; its
width increases from 0 to w over an expansion section of length
l, then remains constant and equal to w over a measurement
section of length L � l. (The origin of x is at the top of the
measurement section. L is the ‘‘length of the flow’’ and w the
‘‘width of the flow.’’) Reservoir RT contains a soapy solution
which flows through valve V and into the film. After flowing
through the film with mean velocity uðxÞ, the soapy solution
drains into reservoir RB and returns to reservoir RT via pump P.
In our experiments, the soapy solution consists of ’ 2:5% Dawn
Nonultra in water; w ¼ 2:5 to 5.1 cm; L ¼ 1:05 to 1.39 m; and
l ¼ 23:5 cm.
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our experiments uðxÞ is a strongly nonmonotonic function
of x.

To measure u, we use laser Doppler velocimetry (LDV).
In Fig. 2 we show plots of u along the center line of several
representative flows. In each flow, u increases downstream
up to a certain point whereupon it peaks, drops abruptly to
a fraction of its peak value, then continues to lessen gradu-
ally downstream.

From the incompressibility condition (uh ¼ q), the
abrupt drop in u should be accompanied by an abrupt
increase in h. To verify this abrupt increase in h, we light
one face of a film with a sodium lamp and observe the
interference fringes that form there. In Fig. 3(a) we show a
photograph of the interference fringes on the part of a film
where u drops abruptly. The distance between successive
fringes decreases rapidly in the downstream direction,
signaling an abrupt increase in h.

To verify the abrupt increase in h by means of an
alternative technique, we put Fluorescein dye in the soapy
solution and focus incoherent blue light on a spot on the
film. The spot becomes fluorescent, and we monitor the
intensity of the fluorescence using a photodetector whose
counting rate is proportional to h. In Fig. 3(b) we show
plots of h along four cross sections of a flow. These cross
sections lie on the part of the flow where u drops abruptly.
The thickness trebles over a short distance of a few centi-
meters in the downstream direction.

To explain our experimental results, we write the steady-
state equation of momentum balance in the form

�huux ¼ 2�x þ �gh� 2�a; (1)

where � is the density, ð�Þx ¼ dð�Þ=dx, � is the surface
tension, g is the gravitational acceleration, and �a is the
shear stress due to air friction. From left to right, the terms
in (1) represent the inertial force, the elastic force, the
gravitational force, and the drag force of the ambient air.

Here we follow Rutgers et al. [7] and use (as a rough

approximation) �a ¼ 0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�a�au
3=ðxþ lÞp

, the Blasius ex-
pression for the shear stress on a rigid plate that moves at a
constant velocity u through air of density �a ¼ 1:2 kg=m3

and viscosity �a ¼ 1:7� 10�5 kg=ms.
To obtain an expression for �x, we argue that the con-

centration of soap molecules in the bulk of the film remains
constant in our experiments (because there is no time for
diffusional exchange between the bulk and the faces of the
film [8,9]). Then, the film is said to be in the Marangoni
regime, and 2�x ¼ ��U2

Mhx [10], where UM is the
Marangoni speed—a property of the film, independent of
h, that quantifies the speed at which disturbances in h
travel on the plane of the film [8,10]. By substituting
2�x ¼ ��U2

Mhx and h ¼ q=u in (1), we obtain the gov-
erning equation

ux ¼ u
g� 2�au=�q

u2 �U2
M

: (2)

In (2) we can distinguish two types of flow: a supercriti-
cal flow in which u > UM and ux > 0, and a subcritical
flow in which u < UM and ux < 0. We conjecture that in
our experiments the flow is supercritical upstream of the
drop in velocity and subcritical downstream. Consistent
with this conjecture, for any fixed q the flow upstream of
the drop in velocity remains invariant to changes in the
length of the flow (inset of Fig. 2).
To confirm that flows are supercritical upstream of the

drop in velocity and subcritical downstream, we use pins to
pierce a flow upstream and downstream of the drop in ve-
locity [Figs. 3(c) and 3(d), respectively]. Upstream of the
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FIG. 2. Plots of the mean velocity u vs x for three steady flows.
The width w ¼ 5:1 cm for all flows; both the length L and the
flux per unit width q change from flow to flow. L ¼ 1:05 m and
q ¼ 3:8� 10�6 m2=s (A), L ¼ 1:23 m and q ¼ 4:9�
10�6 m2=s (B), L ¼ 1:39 m and q ¼ 5:5� 10�6 m2=s (C).
Inset: Plots of u vs x for three steady flows. w ¼ 5:1 cm and
q ¼ 5:7� 10�6 m2=s for all flows; L changes from flow to flow.
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FIG. 3. (a) Fringes over the part of a film where the velocity
drops abruptly. (b) Plots of the thickness vs z along four cross
sections of a flow of width 2.5 cm and length 1.2 m. The cross
sections are at x ¼ 0:95 m (A), x ¼ 1:04 m (B), x ¼ 1:05 m (C),
and x ¼ 1:07 m (D). The large peaks near the lateral edges are
due to backscattering from the wires. Fringes at a piercing
upstream (c) and downstream (d) of the drop in velocity;
fields of view ¼ 5 cm� 1 cm.
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drop in velocity the Mach angle�50� [from Fig. 3(c)], and
the local u ¼ 1:83 m=s (from an LDV measure-
ment); thus UM� sin50��1:83m=s¼1:4m=s in our
experiments.

Let us test the governing equation (2) for one of our
experiments. We adopt a value of UM and a value of q and
perform two computations. First, we integrate (2) down-
stream from x ¼ 0 with boundary condition uð0Þ ¼ u0,
where u0 is the velocity measured at x ¼ 0 in the experi-
ment [11]. This first computation gives a function uðxÞ that
should fit the experiment upstream of the drop in velocity.
Second, we integrate (2) upstream from x ¼ Lwith bound-
ary condition uðLÞ ¼ uL, where uL is the velocity mea-
sured at x ¼ L in the experiment [11]. This second
computation gives a function uðxÞ that should fit the ex-
periment downstream of the drop in velocity. We perform
the same computations for each one of our experiments
trying different values of q andUM, and choose the optimal
values of q and the optimal value of UM—that is to say, the
values of q (one for each experiment) and the value of UM

(the same for all experiments) that yield the best fits to the
experiments (Fig. 4). The optimal value of UM, 1:48 m=s,

is in remarkable agreement with our estimate from
Fig. 3(c) (1:4 m=s). The optimal values of q are in reason-
able agreement with the experimental estimates for q [12]
(caption to Fig. 4).
We conclude that a drop in velocity signals a

supercritical-to-subcritical transition and corresponds to a
Marangoni shock. In theory the drop in velocity is infi-
nitely steep and may be said to take place at x ¼ x�, where
u attains the value of UM (and ux becomes singular) in the
subcritical flow (Fig. 4) [13]. But in experiments the drop
in velocity takes place over a finite span �x whose magni-
tude appears to increase with q (Fig. 4) and whose down-
stream edge is located at about x ¼ x�, the theoretical
position of the shock (a position which appears to move
downstream as q increases). Thus in our simple theory the
shock is sharp whereas in experiments the shock is diffused
over a finite span �x.
To understand the reason why our theory (which does

not account for turbulence) cannot resolve the structure of
the shock, recall that a shock must dissipate energy at a
steady rate [14]. We argue (i) that the shock dissipates
energy by powering locally intense turbulent fluctuations
and (ii) that these fluctuations must extend roughly over the
same span �x as the shock that powers them [15].
To test these arguments we use LDV to measure the root-

mean-square velocity urms along the center line of a repre-
sentative flow (Fig. 5). From a comparison of Figs. 5(a) and
5(b), we confirm that the shock is accompanied over its
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FIG. 4. Plots of the computational uðxÞ (lines) and experimen-
tal uðxÞ (points) for ten different flows. The computations are for
UM ¼ 1:48 m=s and the values of q indicated below (the ex-
perimental estimates for q are indicated in parentheses [12]).
w ¼ 5:1 cm for all flows. (a) Flows of length 1.05 m: (A) q ¼
5:7� 10�6 m2=s (3:9� 10�6 m2=s), (B) 25� 10�6 m2=s
(5:7� 10�6 m2=s); (b) flows of length 1.17 m: (A) 5:7�
10�6 m2=s (5:1� 10�6 m2=s), (B) 7:4� 10�6 m2=s (5:9�
10�6 m2=s), (C) 30� 10�6 m2=s (7:5� 10�6 m2=s); (c) flows
of length 1.23 m: (A) 6:1� 10�6 m2=s (4:1� 10�6 m2=s), (B)
14� 10�6 m2=s (5:3� 10�6 m2=s), (C) 31� 10�6 m2=s
(6:5� 10�6 m2=s); and (d) flows of length 1.39 m: (A) 16�
10�6 m2=s (4:7� 10�6 m2=s), (B) 25� 10�6 m2=s (6:3�
10�6 m2=s).
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FIG. 5. (a) Plots of the computational uðxÞ (lines) and the
experimental uðxÞ (points) for a representative flow. �x is the
span of the shock. (b) Plot of the experimental u2rms (an index of
the energetic contents of the velocity fluctuations) vs x for the
same flow. Inset: energy spectra at the center line of the same
flow for the cross section at x ¼ 0:60 m (A), x ¼ 1:17 m (B),
and x ¼ 1:30 m (C). These are the cross sections marked A, B,
and C in part (b). The spectra are log-log plots of the energy
density E (m3=s2) vs the wave number k (1=m).
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entire span �x by velocity fluctuations that are up to thrice
as intense as the velocity fluctuations that prevail both
upstream and dowstream of �x. We conjecture that intense
velocity fluctuations can arise more readily where the
mean velocity is higher; this may explain why the locally
intense velocity fluctuations—and the diffusive shock that
powers them—are located on the supercritical side of the
theoretical position of the shock.

To verify that the velocity fluctuations are turbulent, we
obtain the energy spectrum on the center line of the flow
for three cross sections: one upstream, one within, and one
downstream of the shock [inset to Fig. 5(b)]. [These cross
sections are marked ‘‘A,’’ ‘‘B,’’ and ‘‘C’’ in Fig. 5(b).] The
area under the spectrum is larger for cross section B than
for cross sections A and C, confirming that the turbulence
is more intense within the shock than elsewhere in the flow.
Further, the slope of the spectrum at intermediate wave
numbers and the shape of the spectrum at low wave num-
bers differ on either side of the shock, indicating that the
spectrum undergoes structural changes as the flow traver-
ses the shock.

We have demonstrated the spontaneous occurrence of
shocks in the soap-film flows that are customarily used in
experimental work on two-dimensional turbulence. These
shocks are dissipative and diffusive; they give rise to
fluctuations independently from the boundaries, with a
strong but circumscribed effect on the spatial distribution
of turbulent intensity, and they alter the structure of the
turbulent spectrum downstream from the shock. We con-
clude that the presence of shocks should be factored in in
the interpretation of experimental measurements, and sub-
mit that shocks may furnish a convenient setting to study
localized turbulence production in two dimensions.
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