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Rough-pipe flows and the existence of fully developed turbulence
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It is widely believed that at high Reynolds number (Re) all turbulent flows approach a limiting state
of “fully developed turbulence” in which the statistics of the velocity fluctuations are independent of
Re. Nevertheless, direct measurements of the velocity fluctuations have failed to yield firm
empirical evidence that even the second-order structure function becomes independent of Re at high
Re, let alone structure functions of higher order. Here we relate the friction coefficient (f) of
rough-pipe flows to the second-order structure function. Then we show that in light of experimental
measurements of f our results yield unequivocal evidence that the second-order structure function
becomes independent of Re at high Re, compatible with the existence of fully developed
turbulence. © 2006 American Institute of Physics. [DOI: 10.1063/1.2189285]

A conspicuous manifestation of turbulence, and one that
lends itself readily to theoretical analysis, is the advent of
fluctuations in the velocity field of a flow. In a classic paper,1
Kolmogdérov made a few plausible assumptions to show that
in flows of high Re the statistics of the velocity fluctuations
might become asymptotically invariant to further increases in
Re. Kolmogérov’s Re-independent statistics of the velocity
fluctuations define a limiting state of “fully developed turbu-
lence” that is widely believed to exist at very high Re. Sup-
port for the existence of fully developed turbulence has been
sought in direct, hot-wire measurements of the velocity fluc-
tuations. These efforts have been concerned mostly with the
second-order structure function, which is just one component
of the statistics of the velocity fluctuations; yet, as recent
research has shown,zf5 the results remain inconclusive. In
this Brief Communication, we concentrate on the second-
order structure function and seek to prove that it does be-
come independent of Re at high Re. To that end, we formu-
late a theory that allows us to harness empirical results other
than direct measurements of the velocity fluctuations. We
start with an outline of the intricacies of the problem.

Kolmogérov studied the statistics of the velocity fluctua-
tions at the length scale /, ;. He used dimensional analysis to
show that the second-order structure function (u1)2 [i.e., the
mean value of (1;)*] must take the form!

(u;)? = P[Re,l/L](e])??, (1)

where P is a dimensionless function of the dimensionless
variables Re and I/L, Re>1 is a Reynolds number of the
flow, L is the largest length scale in the flow, € is the mean
value of the rate of energy dissipation per unit mass, and [/ is
confined to the inertial range, L>[> 5, where 7 is the
viscous (dissipation) length scale.® Given that Re>1 and
[/L<1, it is natural to identify a plausible asymptotic sce-
nario for Re— and I/L—0. To that end, Kolmogérov as-
sumed complete similarity with respect to Re and [/L, or
limge_.. limy; o P=p, where p>0 is a constant prefactor.7
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Under this assumption, the leading term in the asymptotic
expansion of (u)? is (u))%,=p(el)??, independent of Re, and
therefore compatible with the existence of fully developed
turbulence.®

Shortly after the publication of Kolmogérov’s paper in
1941, it was objected that the asymptotic scenario proposed
by Kolmogérov, and customarily known as K41, could not
account for intermittencyg—a phenomenon whereby the rate
of energy dissipation per unit mass fluctuates around its
mean value, €. To account for intermittency, Kolmogérov
himself argued that the similarity with respect to //L might
be incomplete, and went on to assume the simplest type of
incomplete similarity7 with respect to //L. Under this as-
sumption, the leading term of (u))? is (u)%,=p(e)?3(1/L)*,
where « is a constant intermittency exponent.10 This alterna-
tive asymptotic scenario, known as K62, has led to a vast
body of research on interrnittency.9 Nevertheless, in K62
Wn remains independent of Re, as was the case in K41,
and therefore continues to be compatible with the existence
of fully developed turbulence (albeit not the same fully de-
veloped turbulence predicted by K41). In this sense, K62
represents only a minor departure from K41.

More recently, a major departure from K41 has been
suggested on the basis of new experimental results.>” These
results indicate that even at very high Re the prefactor p is
not constant, but subject to a discernible dependence on
Re—a dependence that is marked enough as to cast doubts
on the existence of fully developed turbulence. To analyze
these results, Barenblatt and Goldenfeld* argued that there
might be no similarity with respect to Re. Further, they ar-
gued that the form of (u;)*> at high Re should be invariant
under a natural redefinition of Re,11 and showed that for this
principle of asymptotic covariance to hold (u;)* (and there-
fore p) must depend on Re only through In Re. Last, they
wrote'> p(InRe)=pg+p;5+0(8), where S5=1/|InRe|<1.
Under these conditions,
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(u)*= (1’0 + 2 )(sl)2’3(l/L)“+ 0< 1 ) 2)
In Re In Re

and the behavior of (u_l)2 at high Re depends crucially on the
value of py=0. If py>0, then (u,)*,=po(el)**(1/L)%, inde-
pendent of Re, and is therefore compatible with the existence
of the same fully developed turbulence predicted by K41 (if
a=0) or K62 (if a#0). On the other hand, if py=0, then
(u))*=p,()**(1/L)%/In Re, dependent on Re, and is there-
fore incompatible with the existence of fully developed tur-
bulence. To decide between these alternative scenarios,
Barenblatt and Goldenfeld* computed best fits of (2) to hot-
wire data from a large wind tunnel and the atrnosphere,2 for
both p,>0 and py=0, and concluded that the data were “not
inconsistent with either of the two possibilities.” In another
attempt at deciding the matter, Sreenivasan’ studied a large
set of hot-wire data, and concluded that the prefactor p is
“more or less universal, essentially independent of the flow
as well as the Reynolds number”."? Nevertheless, he noted
that the scatter in the data was lalrge,14 and that to evince the
behavior of p for Re>1 one would have “to cover a wide
range of Reynolds numbers in a single, well-controlled flow,
and use instrumentation whose resolving power and quality
remains equally good in the entire range”; unfortunately,
“such experiments and efforts are not yet in the horizon at
present.”5

To decide the matter, we intend to resort to experimental
data on the friction coefficient of rough pipes, f. These
data'>'® appear to be well suited to our purpose: they contain
very little scatter and show beyond doubt that, for any fixed
wall roughness, the leading term of f is independent of Re at
high Re. Further, we know that for the case py>0 (and
p1=a=0) the observed behavior of f at high Re can be pre-
dicted theoretically by establishing a relation'” between
f and (u;)?. Our problem is to make a similar prediction for
the case py=0; our hope is that this prediction will turn out to
be at odds with the observed behavior of f at high Re. Such
an outcome would allow us to rule out the case py=0, and
therefore to prove that (u,)> becomes independent of Re at
high Re.

The friction coefficient of a pipe may be defined as
f=7/ pVZ, where 7 is the shear stress on the wall of the pipe,
p is the density of the liquid flowing through the pipe, and V
is the average velocity of the flow. We seek to obtain an
expression relating f to the second-order structure function
of (2). Now (2) was originally derived under the assumptions
of isotropy and homogeneity, but the turbulent flow in a pipe
is both anisotropic and inhomogeneous. Nevertheless, recent
research'® has established that (2) applies as well to flows
that are neither isotropic nor homogeneous.19 Further, if
v; denotes the characteristic velocity of a turbulent eddy of
size [, we may identify’ v,= \/W where (u;)? is given by
(2) with L=D (the diameter of the pipe, which sets the larg-
est length scale in the flow). Therefore, it follows from (2)
that, regardless of the value of p,, the smaller the eddy the
lower its velocity. With these considerations in mind, we
now seek to derive an expression for 7, the shear stress on
the rough wall of the pipe.

Let us call S the wetted surface tangent to the peaks of
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FIG. 1. Immediate vicinity of a rough-pipe wall with roughness elements of
uniform size r. The dashed line is the trace of the wetted surface S.

the roughness elements of the wall, Fig. 1. (We assume
roughness elements of uniform size r, as in Nikuradse’s
experiments.'s) Then, for Re> 1, the shear stress is effected
by momentum transfer across S. Above S, the velocity of the
flow scales with V, and the fluid carries a high horizontal
momentum per unit volume (~pV). Below S, the velocity of
the flow is negligible, and the fluid carries a negligible hori-
zontal momentum per unit volume. Now consider an eddy
that straddles the wetted surface S (with one half of the eddy
above S, and the other half below). This eddy transfers fluid
of high horizontal momentum downwards across S, and fluid
of negligible horizontal momentum upwards across S. The
net rate of momentum transfer across S is set by the velocity
normal to S, which velocity is provided by the eddies that
straddle S. Therefore, if v,, denotes the velocity normal to S
provided by the dominant eddy that straddles S, then the
shear stress effected by momentum transfer across S scales in
the form 7~pVv,. Now the size of the largest eddy that
straddles S scales with r, the size of the roughness elements.
This eddy provides a velocity v,=/(x,)> normal to S, where
(u,)? is given by (2) with [=r and L=D. Smaller eddies do
provide a velocity normal to S, but these velocities are over-
whelmed by the velocity of the eddy of size r. (Recall that
the smaller the eddy the lower its velocity.) Thus v, ~v,, and
the dominant eddy that straddles S is the largest eddy that
straddles S. We conclude'™® that 7~ pv,V, and therefore
f~v,/V=+(u,)?IV.

To complete our derivation, we relate € to V and D using
the phenomenological theory, which is based on two tenets
pertaining to the steady production of turbulent (kinetic) en-
ergy: (1) the production occurs at the length scale of the
largest eddies in the flow and (2) the rate of production is
independent of the viscosity. From these tenets and the
equality of production and dissipation, it follows that we can
obtain a scaling expression for &, the rate of dissipation of
turbulent energy per unit mass of liquid, in terms of the
velocity of the largest eddies (which ~V) and of the size of
the largest eddies (which ~D).*' The largest eddies possess a
kinetic energy per unit mass e~ V? and a turnover time
t~D/V. These eddies persist for a time ¢, whereupon they
split into eddies of size ~D/2, thereby transferring their en-
ergy to smaller length scales. For the steady state to be
preserved, a new set of large eddies must be produced at time
intervals ¢, implying that! e=e/t~V3ID. By using
e~V3/D, I=r, and L=D in (2), and substituting the result in
f~ \/(u_7/ V, we obtain

12
Pi ) ’ 3)

~ (#/D l/3+a/2( +
f~ (r/D) Po In Re

an expression relating f to the parameters p, p;, and « of the
asymptotic expansion of the structure function.
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FIG. 2. A comparison of Nikuradse’s data (Ref. 15) with Strickler’s expres-
sion. The straight line is log(f)=—0.54+1log(r/D)/3. The data points corre-
spond to the highest Re (=10°) tested by Nikuradse.

Now consider a pipe of fixed roughness, r/D=const
<1. If pp=0, the leading term of f depends on Re:
fiu~ \Vp(r/D)"3*¥2(In Re)~"2. Thus for p,=0 the friction
coefficient vanishes asymptotically at high Re, a conclusion
that is at odds with all experimental data on rough-pipe
flows. On the other hand, if py>0 the leading term of f is
independent of Re: fi,~ \py(r/D)"3*¥?. Thus for p,>0 the
friction coefficient tends to a positive constant at high Re, a
conclusion that is qualitatively consistent with all experimen-
tal data on rough-pipe flows. Further, in the case a=0,
fiu~ \po(r/ D)3, which we recognize as Strickler’s empirical
f:)(prf:ssion22’17’15 for the friction coefficient of a pipe
of roughness r/D at high Re. In the case a#0,
fii~ \po(r/D)'3*%2 which is a generalized form of Strick-
ler’s empirical expression that accounts for the effect of in-
termittency. Given that the experimental data can be fitted
very well even if « is set to zero (Fig. 2), we infer that
1/3>|a|/2, or |@|<2/3, consistent with the available esti-
mates of «.'

From the previous paragraph, we conclude that Eq. (3)
together with the experimental data embodied by Strickler’s
empirical expression allows us to establish that py,>0.
Therefore, the leading term of the structure function () is
independent of Re, compatible with the existence of fully
developed turbulence.

The logic of our reasoning so far has been the following.
We have shown theoretically that p,>0 is a necessary con-
dition for the friction coefficient of a rough pipe to tend to a
positive constant at high Re. Then, given the unequivocal
experimental evidence that in a rough pipe limg._,..f=const
>0, we have concluded that it must be that p,>> 0. Interest-
ingly, po>>0 is not in general a sufficient condition for the
friction coefficient of a pipe to tend to a positive constant at
high Re: the pipe must be rough. To elucidate this statement,
we recall our scaling expression for the shear stress,
7~pv,V. This expression indicates that the momentum
transfer is dominated by the eddies of size r-the same size as
the roughness elements. Now in a rough-pipe flow of suffi-
ciently high Re, r exceeds the viscous length scale, r> 7. In
fact, from 7= v**¢~1* (where v is the kinematic viscosity)
and e~ V3/D, we can write /D~ (v/VD)¥*=Re™* and
conclude that for any given r the condition r> 7 holds at
sufficiently high Re. If Re is increased further, 7 lessens and
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newer, smaller eddies populate the flow. Yet the momentum
transfer continues to be dominated by eddies of size r, and f
remains invariant. This argument explains the behavior of f
for all rough pipes, no matter how small the roughness ele-
ments. If r=0, however, the condition > 7 cannot be at-
tained, even at extremely high Re. Thus in a smooth pipe23
the momentum transfer will always be dominated by the
smaller eddies in the inertial range, eddies whose size scales
with #; since 7 lessens as Re increases, the momentum
transfer will be dominated by ever smaller eddies as Re in-
creases, and limg,_,..f'=0—even though py,> 0. To verify this
conclusion mathematically, we study (3) for r~ 7. By sub-
stituting 77/D ~ Re™* in place of r/D, we obtain

12

_1/4-3a )4

f~Re M3 /8<p0+ 1 ) . (4)
In Re

In accord with our discussion above, (4) indicates that in a
smooth pipe the friction coefficient vanishes asymptotically
at high Re, whether py=0 or py>0. Had we to decide be-
tween po=0 and py,>>0 on the basis of (4) and experimental
data, the answer would not be clearcut, because (In Re)™!/?
varies but very slowly at high Re. Nevertheless, we have
established previously that py>0. It follows that
fii~ VpoRe 4398 which in the case a=0 coincides with
Blasius’s empirical expressionlS’]7 for the friction coefficient
of a _smooth pipe at high Re. In the case a#0,
fii~ VpoRe 438 "which is a generalized form of Blasius’s
empirical expression that accounts for the effect of intermit-
tency.

We have concerned ourselves with two aspects of turbu-
lent flows: (1) small-scale statistics that might become inde-
pendent of Re at high Re and (2) global properties that do
become independent of Re at high Re. The former were first
surmised in the early history of turbulence physics; they in-
clude the second-order structure functions associated with
K41 and K62, the asymptotic scenarios of Kolmogérov. The
latter have long been known to engineers; they include the
drag of bluff bodies and the friction coefficient of rough
conduits, among others.”* Here we have established a rela-
tion between the two. In particular, we have found that for
the friction coefficient of rough pipes to tend to positive
constants at high Re, as seen in experiments, it must be that
the second-order structure function becomes independent of
Re at high Re, compatible with the existence of fully devel-
oped turbulence. In addition, we have found that the exis-
tence of fully developed turbulence is compatible with the
experimental evidence that the friction coefficient of smooth
pipes tends to zero at high Re.

Our findings support the existence of fully developed
turbulence, but do not prove it. To prove the existence of
fully developed turbulence, we must ascertain the behavior
of the structure functions of order higher than 2. A promising
way of ascertaining this behavior might involve the harness-
ing of empirical evidence other than direct measurements of
the velocity fluctuations.

We thank J. W. Phillips for kindly reading our manu-
script and suggesting ways of improving it.
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