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Hydraulic jumps are a common feature of rivers and waterways,
where they can be found close to spillways, weirs, rocky ledges,
and boulders. People adrift upstream of a hydraulic jump are liable
to become trapped in the turbulent roller of the hydraulic jump.
For this reason, hydraulic jumps have been termed “drowning
machines” and are recognized as a public hazard. We use experi-
ments and theory to show that on average a buoyant object
spends a time τ∕p trapped in a jump, where τ is the period of a
harmonic process inherent in the jump, and p is the probability that
the object will escape in any time interval τ. The probability p is
governed by the statistical theory of extreme values and depends
primarily on the ratio between the density of the object and
the density of the fluid. We use our results to draw conclusions
that might prove to be useful to public-safety agencies intent on
carrying out tests in drowning machines. Our results can also be
used to predict the amount of flotsam that accumulates at the
toe of a hydraulic jump.
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A hydraulic jump forms in an open stream where a fast and
shallow, supercritical flow transitions downstream to a com-

paratively slower and deeper, subcritical flow (1) (Fig. 1 A and B).
The hydraulic jump consists of a turbulent roller in which the
kinetic energy of the supercritical flow is dissipated in order to
match the kinetic energy of the subcritical flow (1). Thus hydrau-
lic jumps are often engineered to prevent erosion downstream of
dams, weirs, spillways, and canoe chutes (2). Hydraulic jumps also
occur spontaneously in river rapids (3), where large hydraulic
jumps may form upstream of rocky ledges and boulders (4).
Plants, trash, logs, boats, and sometimes even animals and people
may pass through a hydraulic jump. To pass through a jump, a
buoyant object must dip into the flow and move under the roller
to emerge on the surface of the subcritical flow downstream of
the roller (trajectory A, Fig. 1C). Before the object finds its way
there, it spends some time trapped in the jump. As demonstrated
by the type of sign found in proximity of drowning machines
(Fig. 1D), the outcome is often fatal. For example, in 1983 a raft
was overturned and its occupants became trapped in a 6-m-high
jump on the Colorado River. One person drowned and dozens
were seriously injured (4). Our goal is to relate the statistical
properties of the time that a buoyant object spends in a jump to
the attributes of the jump and the buoyant object.

We carry out experiments in an open channel of uniform
rectangular cross-section. The fluid is tap water. To create a
hydraulic jump, we start with a supercritical flow, that is, a flow
of Froude number Fr > 1 (caption of Fig. 1B). This supercritical
flow spans the length of the channel, from inlet to outlet. We then
place a step at the outlet; the water builds up there, and after
some time a jump becomes established at about the midpoint
between the inlet and the outlet (Fig. 1 A and B). Upstream of
the jump, the flow is the same as before; downstream of the jump,
the flow is subcritical, and the Froude number Fr0 < 1 (caption
of Fig. 1B).

We drop a buoyant spherical ball in the flow upstream of the
jump and measure the time the ball spends in the jump before

making it to the surface of the flow downstream of the jump.
We call this time the residence time. The residence time can vary
widely from trial to trial. After measuring many residence times,
we compute the cumulative probability distribution QðtÞ, that is,
the probability that the ball will remain in the jump after an
elapsed time t. Plots of several cumulative probability distribu-
tions are shown in Fig. 2. (See SI Appendix for further details.)

To help interpret the plots of Fig. 2, we describe the behavior
of a ball in a hydraulic jump. When the ball reaches the toe of the
jump, it lingers there for a while before it dips into the flow.
Where the residence time is brief, the ball dips and is promptly
advected under the roller (trajectory A, Fig. 1C). The ball has
escaped.

Where the residence time is longer, the ball may undergo
numerous cycles before it escapes. In each cycle the ball dips, is
caught into the roller, and returns to its original position at the toe
of the jump (trajectory B, Fig. 1C). Eventually, the ball dips and
is advected downstream without getting caught into the roller.

To each of the cycles of the previous paragraph we ascribe the
same characteristic time τ and the same probability of escape, p.
The probability that a ball will remain in a jump after n cycles
is ð1 − pÞn, and the residence time of a ball that escapes after
n cycles is t ¼ nτ þ t0, where t0 is the time needed for the ball
to move under the roller (trajectory A, Fig. 1C). The cumulative
probability distribution can be expressed in the form QðtÞ ¼
ð1 − pÞðt−t0Þ∕τ or lnQðtÞ ¼ stþ q, where s≡ lnð1 − pÞ∕τ and
q≡ −t0 lnð1 − pÞ∕τ. For any combination of jump and ball the
values of s and q can be extracted directly from a plot of
lnQðtÞ (Fig. 2) and used to compute p and t0,

p ¼ 1 − exp sτ; [1]

and t0 ¼ −q∕s. We refer to s as the “slope of the cumulative prob-
ability distribution QðtÞ.”

Consider the characteristic time τ. We argue that τ is the per-
iod of a harmonic process inherent in the jump (5–8). Thus τ may
depend on the five variables of the jump—V (or V 0), h (or h0), g,
ρ, and μ, where ρ and μ are the density and the viscosity of the
fluid, respectively. From Buckingham’s Π theorem of dimen-
sional analysis (9), the functional relation between τ and the five
variables of the jump can be expressed in the form of an equiva-
lent functional relation among three dimensionless variables. We
choose the dimensionless variables τg∕V 0, Fr≡ V∕

ffiffiffiffiffi
gh

p
, and

Re≡ ρVh∕μ (the Reynolds number of the jump, which quantifies
the relative importance of the inertial forces and the viscous
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forces in the jump). For most jumps Re ≫ 1 (in each of our
experiments Re > 7.5 × 104), and the viscous forces are negligible
as compared to the inertial forces. We can therefore assume that
τg∕V 0 depends only on Fr.

To relate τg∕V 0 to Fr, we identify τ with the period of a wave
that forms on the surface of the flow downstream of a jump

(Fig. 1 A and B). By measuring the period of that wave for several
jumps, we compute data points ðτg∕V 0;FrÞ. Based on a plot of
these data points (Fig. 3), we write the semiempirical formula
τ ¼ 3.2ðFr − 1ÞV 0∕g.

Consider next the probability p that the ball will not be caught
into the roller in a given cycle (trajectory A, Fig. 1C). As the ball
is advected under the roller, it may be kept bouncing off the
keel of the roller by a series of collisions with the turbulent eddies
(or fluctuations) of the roller. The turbulent eddy of collision i
has a revolving velocity vi, and x is the smallest value of vi,
x≡minðv1;v2;⋯;vNÞ, where N is the number of collisions. We
propose that the ball will not be caught into the roller if x ≥ xc,
where xc is a threshold value. If N → ∞ and the vis are sampled
from a common distribution (10–13) in the domain of attraction
(14) of the extreme-value distribution of type I (15), then the
probability that x ≥ xc will be

p ¼ 1 − expð− expXcÞ: [2]

Here Xc ≡ ðxc − αÞ∕β, βπ∕
ffiffiffi
6

p
is the standard deviation of x,

α − Γβ is the mean value of x, and Γ is the Euler–Mascheroni con-
stant. Now, the variable Xc may depend on the five variables of
the jump (V , h, g, ρ, and μ) and the two variables of the ball (the
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Fig. 1. Hydraulic jumps. (A) Side view of a hydraulic jump in the laboratory. The flow is from left to right. (B) Side view of a hydraulic jump (schematic). The
curly arrows represent the turbulent eddies (or fluctuations) of the roller. V and h are, respectively, the average velocity and the average depth of the super-
critical flow; V 0 and h0 are, respectively, the average velocity and the average depth of the subcritical flow. In the supercritical flow the inertial forces dominate

over the gravitational forces, so that the Froude number Fr≡ V∕
ffiffiffiffiffiffi
gh

p
> 1 (1), where g is the gravitational acceleration. In the subcritical flow the gravitational

forces dominate over the inertial forces, so that the Froude number Fr0 ≡ V 0∕
ffiffiffiffiffiffiffiffi
gh0p

< 1 (1). For any given jump, V , h, V 0, and h0 are related by the equations of

conservation of momentum andmass, which may be written as h0 ¼ hð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Fr2

p
− 1Þ∕2 and V 0 ¼ Vh∕h0 (1). It follows that Fr0 ¼ Fr½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Fr2

p
− 1Þ∕2�−3∕2. (C) A

buoyant object escapes the jump (trajectory A) and is caught into the roller (trajectory B). (D) Drowning machines (19) have proven to be so troublesome in
highly populated areas that municipalities are having recourse to extreme measures. For example, the city of Calgary, AB, Canada, is currently undertaking a
$6.4 million project to eliminate a drowning machine on the Bow River. The picture was taken in August 2010, amid the construction work. Note that the
drowning machine sketched in the picture is a “submerged hydraulic jump,” a special case of a hydraulic jump. We have carried out experiments only on
exposed hydraulic jumps, but in SI Appendix we discuss how to adapt our analysis to the case of submerged hydraulic jumps.
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Fig. 2. Cumulative probability distributions QðtÞ of the residence time t.
Each distribution is a straight line—the best fit to a set of data points for
a given combination of jump and ball. A set of data points consists of data
points [tm; lnðm∕MÞ], m ¼ 1 to M, where M is the number of measurements
of the residence time and t1;t2;…;tM are the residence times ordered longest
to shortest. Next to each distribution, we indicate the ball density (in g∕cm3).
The Froude number is about (A) 4 and (B) 5.
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Fig. 3. Experimental data on the characteristic time τ. The data points
are from measurements of the period of the wave found on the surface
of the flow downstream of a jump. The straight line corresponds to τg∕V 0 ¼
3.2ðFr − 1Þ.
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diameter d and the density ρb). (See SI Appendix for further de-
tails.) We apply Buckingham’s Π theorem once again and choose
the dimensionless variables Xc, ρb∕ρ, Fr, Re, and Reb ≡ ρVd∕μ
(the Reynolds number of the ball). For most jumps Re ≫ 1
(as we argued before), and for most combinations of jump and
ball Reb ≫ 1 (in each of our experiments Reb > 5 × 104, consis-
tent with our assumption that the interactions between the ball
and the eddies of the roller are collisional). Thus we can assume
that Xc is independent of both Re and Reb. Further, we assume
that Xc is largely independent of Fr (we will come back to this
assumption later on) and therefore that Xc depends only on
ρb∕ρ. As 0 < ρb∕ρ < 1, we use the estimate

Xc ¼ aþ bρb∕ρ; [3]

where a and b are dimensionless constants. This estimate corre-
sponds to the first two terms of the Taylor expansion of Xc
about ρb∕ρ ¼ 0.

By combining Eqs. 1–3, we conclude that

lnð−sτÞ ¼ aþ bρb∕ρ; [4]

where s is the slope of the cumulative probability distributionQðtÞ
and τ ¼ 3.2ðFr − 1ÞV 0∕g. To test Eq. 4, we compute a data point

[lnð−sτÞ;ρb∕ρ] for each combination of jump and ball in our
experiments and plot all 87 data points as shown in Fig. 4. By
fitting Eq. 4 to the data points, we determine the optimal values
a ¼ −5.35 and b ¼ 5.72. Using these optimal values, we estimate
the probability that a denseless ball will escape the jump in any
given cycle, p ¼ p0 ≡ 1 − expð− exp aÞ ¼ 0.0047, and the prob-
ability that a ball of the same density as the fluid will escape the
jump in any given cycle, p ¼ p1 ≡ 1 − exp½− expðaþ bÞ� ¼ 0.76.

The scatter in Fig. 4 exceeds the error bars of many data points.
From Fig. 4, Inset, we conclude that the scatter does not hide a
systematic dependence on Fr (recall our assumption that Xc is
independent of Fr). But Eq. 2 holds only asymptotically, for
N → ∞; convergence is known to be slow (14); and the excess
scatter may be ascribed to an insufficient number of collisions
per cycle.

So far we have carried out experiments with spherical balls.
To show that the theory can be applied more widely, we carry
out several additional experiments with a bottle and a pillbox par-
tially filled with water. The corresponding data points, shown as
open circles in Fig. 4, are indistinguishable from the data points
that we obtained earlier.

To summarize, the average residence time of a buoyant object
in a hydraulic jump can be estimated as τ∕f1 − exp½− expð−5.35þ
5.72ρb∕ρÞ�g, where τ is a characteristic period of the jump, ρb is
the density of the object, and ρ is the density of the fluid. In a
typical drowning machine the residence time can vary from a
few minutes for a very light object (ρb∕ρ ≈ 0) to about 1 s for
an object that is barely buoyant (ρb∕ρ ≈ 1). Note, however, that
an increase in ρb∕ρ leads to a sizable lessening in residence time
only at relatively large values of ρb∕ρ. Thus the average residence
time of a person should not exceed a few seconds, regardless of
whether a life jacket is worn (ρb∕ρ ≈ 0.85) or not worn
(ρb∕ρ ≈ 0.95), provided that the person remains passive (as the
buoyant objects of our experiments) (16–18). But far from
remaining passive, people will typically swim frantically to stay
away from the downward pull upstream of the jump, which is
precisely where a chance may be had of escaping by being
advected under the roller. Public-safety agencies might wish to
carry out tests in which participants are instructed either to re-
main passive, perhaps curled in the fetal position, or to direct
any expenditure of energy toward gaining depth under water.
The notion that a life jacket can significantly delay escape from
a drowning machine cannot be reconciled with our results.
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Fig. 4. Experimental data points [lnð−sτÞ;ρb∕ρ]. The filled circles with error
bars are the data points for spherical balls. (See SI Appendix for a description
of the method used to calculate the error bars.) The solid line is the optimal
fit of Eq. 4 to these data points, and the dashed lines are the optimal fit� ln 2.
The open circles are the data points for a bottle and a pillbox (see SI Appendix
for further details). (Inset) Plot of the vertical scatter Δ (the signed vertical
distance between the optimal fit and each data point) as a function of Fr.
We discern no clear correlation between Δ and Fr.
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